create random diagonalisable matrix

7 Ansichten (letzte 30 Tage)
Gary Soh
Gary Soh am 18 Sep. 2018
Kommentiert: David Goodmanson am 19 Sep. 2018
hi.. I would like to create a random diagonalisable integer matrix. Is there any code for that? thereafter I would want to create matrix X such that each the columns represent the eigenvectors.

Akzeptierte Antwort

David Goodmanson
David Goodmanson am 19 Sep. 2018
Hi Gary,
another way:
n = 7 % A is nxn
m = 9 % random integers from 1 to m
X = randi(m,n,n)
D = round(det(X))
lam = 1:n % some vector of unique integer eigenvalues, all nonzero
lamD = lam*D % final eigenvalues
A = round(X*diag(lamD)/X)
A*X - X*diag(lamD) % check
If n is too large and m is too small, this doesn't work sometimes because X comes up as a singular matrix.
  3 Kommentare
Bruno Luong
Bruno Luong am 19 Sep. 2018
Bearbeitet: Bruno Luong am 19 Sep. 2018
Actually there is no problem of lam to have null element(s). One can also select it randomly in the above code if the spectral probability is matter.
p = 5; % eg
lam = randi(p,1,n)
David Goodmanson
David Goodmanson am 19 Sep. 2018
spectral variation does seem like a good idea.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Bruno Luong
Bruno Luong am 18 Sep. 2018
Bearbeitet: Bruno Luong am 19 Sep. 2018
Code for both A and X are integer.
I edit the 1st version of the code (if you happens to see t) essentially a bug correction and better generation and simplification. Second edit: fix issue with non-simple eigen-value.
% Building A random (n x n) integer matrix
% and X (n x n) integer eigen-matrix of A
% meaning A*X = diag(lambda)*X
n = 4;
m = 5;
p = 5;
d = randi(2*m+1,[1,n])-m-1;
C = diag(d);
while true
P = randi(2*p+1,[n,n])-p-1;
detP = round(det(P));
if detP ~= 0
break
end
end
Q = round(detP * inv(P));
A = P*C*Q;
g = 0;
for i=1:n*n
g = gcd(g,abs(A(i)));
end
A = A/g;
lambda = sort(d)*(detP/g);
I = eye(n);
X = zeros(n);
s = 0;
for k=1:n
Ak = A-lambda(k)*I;
r = rank(Ak);
[~,~,E] = qr(Ak);
[p,~] = find(E);
j1 = p(r+1:end);
j2 = p(1:r);
[~,~,E] = qr(Ak(:,j2)');
[p,~] = find(E);
i1 = p(r+1:end);
i2 = p(1:r);
Asub = Ak(i2,j2);
s = mod(s,length(j1))+1;
x = Ak(:,j2) \ Ak(:,j1(s));
y = zeros(n-r,1);
y(s) = -1;
x = round([x; y]*det(Asub));
g = 0;
for i=1:n
g = gcd(g,abs(x(i)));
end
X([j2;j1],k) = x/g;
end
D = diag(lambda);
A
X
% % Verification A*X = X*D
A*X
X*D

Matt J
Matt J am 18 Sep. 2018
Bearbeitet: Matt J am 18 Sep. 2018
How about this,
A=randi(m,n);
A=A+A.';
[X,~]=eig(A,'vector');
  4 Kommentare
Gary Soh
Gary Soh am 18 Sep. 2018
yes
Matt J
Matt J am 18 Sep. 2018
Bearbeitet: Matt J am 18 Sep. 2018
I don't think the problem is specified well enough. Eigenvectors are always unique only up to a scale factor and, in finite precision computer math, can always be made integer if you multiply them by a large enough scaling constant.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by