- Use "pchip" for Initial Smoothing: Apply "pchip" to your data to create a smooth curve that respects the shape of your data points. This is particularly useful if you want to avoid overshooting and maintain monotonicity.
- Refine with "csape": Use "csape" to further refine the curve, especially if you need to impose specific boundary conditions or require a smoother result.
Hi everyone, how to use pchip and csape together for data smoothing?
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi everyone, how to use pchip and csape together for data smoothing?
0 Kommentare
Antworten (1)
Gautam
am 11 Feb. 2025
Hello Ayisha,
I am not sure of your specific use case, but, in general, you can use both "pchip" and "csape" together for data smoothing, in the following way:
You can follow something similar to this script
% Sample data
x = 0:10;
y = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100];
% Generate more points for smooth plotting
xq = linspace(min(x), max(x), 100);
% Step 1: Initial smoothing with pchip
y_pchip = pchip(x, y, xq);
% Step 2: Further smoothing with csape
% 'variational' boundary condition minimizes the second derivative at boundaries
y_csape = fnval(csape(x, y, 'variational'), xq);
% Plotting
figure;
plot(x, y, 'o', 'MarkerFaceColor', 'r'); % Original data points
hold on;
plot(xq, y_pchip, '-b', 'LineWidth', 1.5); % pchip interpolation
plot(xq, y_csape, '--g', 'LineWidth', 1.5); % csape interpolation
legend('Data Points', 'pchip', 'csape');
xlabel('x');
ylabel('y');
0 Kommentare
Siehe auch
Kategorien
Mehr zu Spline Postprocessing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!