Which kind of Deep Learning architecture (CNN, LSTM) could I use for classification duty of monodimension signal?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Alessio Izzo
am 7 Sep. 2018
Kommentiert: Alessio Izzo
am 12 Sep. 2018
Hello, I am trying to classify monodimensional signals (spectrum information) using Deep Learning algorithm. Having a dataset of 12000 observation, of 1x2048 samples (frequency taps), I tried to use CNN (NN toolbox of Matlab), with different convolution layer, without good result. I even tried to use LSTM but nothing change. Any suggestion?
Thanks in advance.
0 Kommentare
Akzeptierte Antwort
Vishal Bhutani
am 10 Sep. 2018
By my understanding, you want to train a Neural Network to classify one-dimensional signals. One of the thing you can try is Deep Neural Network with multiple hidden layers, there are various hyperparameter which you can vary: learning rate, number of neurons, number of hidden layers and if you are using recent MATLAB version you can vary the optimizer also same for LSTM. For CNN, try varying the size of filters, number of filters and learning rate. For 1-D data, mostly DNN or LSTM work, but you can try various networks. If possible try increasing dataset.
6 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu AI for Signals finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!