How to calculate integral along the boundary of closed curve?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Romuald Kuras
am 3 Sep. 2018
Kommentiert: Romuald Kuras
am 3 Sep. 2018

Hi!
I would like to calculate the area under the curve (in direction to Z axis - see the attachment file), which is formed of discrete values on the edge of a closed curve. I have an idea, but it is a quite arduous method (using 'trapz' function), does anyone have any other suggestions?
Thanks in advance!
4 Kommentare
Torsten
am 3 Sep. 2018
Take the sum of
sqrt((x(i+1)-x(i))^2+(y(i+1)-y(i))^2)*(z(i)+z(i+1))/2
Best wishes
Torsten.
Akzeptierte Antwort
Dimitris Kalogiros
am 3 Sep. 2018
Bearbeitet: Dimitris Kalogiros
am 3 Sep. 2018
Provided than (x,y) points are very dense you can approximate the area you ask, good enough:
clear; clc;
% generation of input data
t=0:0.01:2*pi-0.01;
x=4*cos(t);
y=2*sin(t);
z=sqrt(abs(x))+y.^2+exp(0.6*x);
stem3(x,y,z,'-b'); hold on;
plot3(x,y,0*z,'-k.'); hold on;
plot3(x,y,z,'r*');
xlabel('x'); ylabel('y'); zlabel('z');
% calculation of area (approximately)
A=0;
for n=1:length(x)-1
A= A+ sqrt( (x(n+1)-x(n))^2 + (y(n+1)-y(n))^2 ) * (z(n)+z(n+1))/2 ;
end
fprintf('Area is %f \n', A)
If you run this script, you will receive something like this:

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!