Info
Diese Frage ist geschlossen. Öffnen Sie sie erneut, um sie zu bearbeiten oder zu beantworten.
How can two neural networks be compared for regression based on training and testing results ?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
How can two neural networks be compared for regression based on training and testing results ?
2 Kommentare
Greg Heath
am 23 Aug. 2018
Bearbeitet: Greg Heath
am 23 Aug. 2018
Since it is obvious that 2 nets can be compared by plotting their reponses, it is unclear what your problem is.
Please elucidate.
Greg
Antworten (2)
BERGHOUT Tarek
am 3 Feb. 2019
for regression the lower error the greater accuracy is the network gets . you can also use a T test for you output analysis to determine which net is better
0 Kommentare
Greg Heath
am 4 Feb. 2019
The MATLAB default is training/validation/testing fractions of 0.7/0.15/0.15
Typically, the performance depends on a
1. A reasonable choice for number of hidden layers and nodes
2. A successful choice of RANDOM division into train/val/test subsets
3. A successful group of RANDOM initial weights
MY APPROACH:
1. A single hidden layer
2. Loop over 0 to Hmax trial values for numHidden
3. 10 random initial weight trials for each test value of H
4. MSEgoal = 0.01*mean(var(target',1))
NETWORK GRADING
grade = alpha*MSEtst + beta*MSEval
If N is sufficiently large alpha = 1, beta = 0
0 Kommentare
Diese Frage ist geschlossen.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!