How to create a triangulation from a list of edges and list of nodes?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dominik Mattioli
am 29 Jul. 2018
Beantwortet: Johannes Korsawe
am 14 Okt. 2022
I'm beginning with a triangulation so that I know this graph is actually composed of non-intersecting edges that define a set of triangles.
% Start with a random triangulation, get edge list.
dt = delaunayTriangulation(rand(101,2)); % Keep it small for now.
edges = unique(sort(... % Unique mx2 list of
[dt.ConnectivityList(:,1:2);... % all edges in dt.
dt.ConnectivityList(:,2:3);...
dt.ConnectivityList(:,[3 1])],...
2),'rows');
figure; triplot(dt);
% Convert dt to graph, plot.
g = graph(edges(:,1),edges(:,2));
figure; g.plot;
% We know that g.edges describe dt, how can we reconstruct it?
0 Kommentare
Akzeptierte Antwort
Johannes Korsawe
am 14 Okt. 2022
allCyclesWithLengthThree = allcycles(g, 'MaxCycleLength', 3);
connectivityList = cell2mat(allCyclesWithLengthThree);
0 Kommentare
Weitere Antworten (1)
Christine Tobler
am 9 Aug. 2018
The problem is that a graph is a more general data structure than a Delaunay triangulation. Many graphs do not represent a triangulation at all, so there is not direct way of doing this.
If you also save the locations of each point in the original triangulation, you could write an algorithm that goes through each point in the graph and finds all the triangles it's a part of.
Could you tell me why you want to retrieve the triangulation from the graph?
1 Kommentar
Siehe auch
Kategorien
Mehr zu Delaunay Triangulation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!