Number of solutions of a system of linear equations
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Gunther Schaaf
am 28 Jul. 2018
Beantwortet: Dimitris Kalogiros
am 28 Jul. 2018
I am looking for MATLAB code to determine the number of solutions (0, 1, Inf) of a system of linear equations (m equations for n variables, e. g.
A=[2,1,3;0, -1,5];
b=[-3;1]
x=A\b
which has infinitely many solutions.
While the answer for the m=n case is given in this excellent post making use of the rank() function I wonder how it can be solved in the general case (m=n, m>n, m<n).
0 Kommentare
Akzeptierte Antwort
Dimitris Kalogiros
am 28 Jul. 2018
Hi Gunther.
You can use solve() within symbolic toolbox.
I'm giving you an example:
syms x y z
eqn1= 2*x + y + 3*z==-3
eqn2= -y + 5*z==1
sol = solve([eqn1, eqn2], [x, y, z], 'ReturnConditions',true);
disp('Solution is :')
[sol.x; sol.y; sol.z]
disp('With parameters : ')
sol.parameters
disp('Under the conditions :')
sol.conditions
Function solve() returns the one solution of the system , or entirely set of solutions if the system has infinite solutions. In case the system has no solutions, sol.x , sol.y , and sol.z are empty.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!