Non Linear Eigenvalue problem

5 Ansichten (letzte 30 Tage)
Abhishek Gaikwad
Abhishek Gaikwad am 24 Jul. 2018
Bearbeitet: Christine Tobler am 8 Jan. 2025
I have been trying to solve a Non linear Eigenvalue problem using fsolve and Newton's iteration method and have not been successful. The matrix which I am looking to solve:
A=[2*w -300 0 0;sin(w/2) cos(w/2) -sin(w/2) cos(w/2); 2*cos(w/2) -2*sin(w/2) -cos(w/2) sin(w/2); 0 0 cos(w) -sin(w)]; (Found in a paper, using it as a practice case)
My Newton method code:
%Define intial values and tolerances for the variable
w0=0.1;
tol=2;
maxiter=1000;
w=w0;
wold=w0;
lambda=0.1;
%Start Iteration
for i=1:maxiter
%Define A and B
A=[2*w -300 0 0;sin(w/2) cos(w/2) -sin(w/2) cos(w/2); 2*cos(w/2) -2*sin(w/2) -cos(w/2) sin(w/2);
0 0 cos(w) -sin(w)];
B=[-2 0 0 0;-0.5*cos(w/2) 0.5*sin(w/2) 0.5*cos(w/2) -0.5*sin(w/2); sin(w/2) cos(w/2) -0.5*sin(w/2) -0.5*cos(w/2);
0 0 sin(w) cos(w)];
C=inv(B);
%Find Eigen value for the intermediate step
beta=eig(C*A);
epsilon=min(abs(beta));
%Update the variable
w=w0+epsilon;
err=abs(epsilon);
wold=w;
if(err<tol)
break;
end
end
Fsolve code
function fval=fun4evp(w)
A=[2*w -300 0 0;sin(w/2) cos(w/2) -sin(w/2) cos(w/2); 2*cos(w/2) -2*sin(w/2) -cos(w/2) sin(w/2);
0 0 cos(w) -sin(w)];
fval=det(A);
end
wsol=fsolve(@(w)fun4evp,0.1);
Thanks
  1 Kommentar
Gyan Swarup Nag
Gyan Swarup Nag am 16 Mär. 2019
clear all;
% One root at a time
% Number of iteration
k=0; % Number of iteration
ks=300;
epsi=1*0.01;
w0=-1
while 1e-14<abs(epsi)
k=k+1;
A=[2*w0 -ks 0 0;
sin(w0/2) cos(w0/2) -sin(w0/2) -cos(w0/2);
2*cos(w0/2) -2*sin(w0/2) -cos(w0/2) sin(w0/2);
0 0 cos(w0) -sin(w0)];
B=-[2 0 0 0;
cos(w0/2)/2 -sin(w0/2)/2 -cos(w0/2)/2 sin(w0/2)/2;
-sin(w0/2) -cos(w0/2) sin(w0/2)/2 cos(w0/2)/2;
0 0 -sin(w0) -cos(w0)];
e = eig(A, B);
[dum,jj]=min(abs(e));
epsi=e(jj)
w0=w0+epsi
end
[w0 k]

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Matt J
Matt J am 24 Jul. 2018
wsol=fsolve(@fun4evp,0.1),
  3 Kommentare
Abhishek Gaikwad
Abhishek Gaikwad am 24 Jul. 2018
Bearbeitet: Matt J am 24 Jul. 2018
!!!That's a bad mistake.Thanks. What about the Newton's method I am not sure about setting the tolerance. Currently, it is equal to the eigenvalue of C*A matrix which never goes to q very low value so i am able to solve the equation but the solution is incorrect.
Abhishek Gaikwad
Abhishek Gaikwad am 24 Jul. 2018
Bearbeitet: Abhishek Gaikwad am 24 Jul. 2018
The idea was to use the taylor series expansion and expand the matrix in the vicinity of w0 giving rise to epsilon which I found equal to the eigenvalue of the equation (A-lamba*B).

Melden Sie sich an, um zu kommentieren.


Christine Tobler
Christine Tobler am 8 Jan. 2025
Bearbeitet: Christine Tobler am 8 Jan. 2025
Sorry for answering so long after the initial post. One option you could consider for solving a nonlinear eigenvalue problem is the Rational Krylov Toolbox for MATLAB: http://guettel.com/rktoolbox/examples/html/example_nlep.html.
(edit to fix the link)

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by