Generating all possible pairs of polynomial?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Husni Rois Ali
am 9 Jul. 2018
Kommentiert: Husni Rois Ali
am 9 Jul. 2018
Basically what I want to do is similar to here https://uk.mathworks.com/matlabcentral/answers/267009-generating-all-possible-pairs-of-polynomial-interaction-combinations i.e. I want to generate all possible power polinomial witch each term less than a certain number. My code is here
clear all
clc
%%input;
mu=7;
my=7;
me=7;
delay=1;
degree=2;
totalD=my+mu+me;
A = cell(totalD,1);
[A{1:totalD}] = ndgrid([0:degree]);
for k=1:totalD
polyPow(:,k)=reshape(A{k},[],1);
end
polyPow(sum(polyPow,2)>degree,:) = [];
The problem I am facing now. If the inputs mu,my, and me (also degree) are a bit big, the matrix A becomes very large and I got error "Requested 3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3 (77.9GB) array exceeds maximum array size preference". Anyone has a better idea for my purpose?
Thank you
2 Kommentare
Rik
am 9 Jul. 2018
Shouldn't you expect a 7x7x7x3 array? Otherwise I don't understand your explanation.
Akzeptierte Antwort
Rik
am 9 Jul. 2018
The big problem is that you are throwing out most of your array. The method I use below does that as well, but much less so, making it faster (except for small cases) and more memory-efficient. There are probably way to make this code better, and it is sorely lacking in comments explaining what I'm doing, but it's getting late. If you need some explanation, just comment below this question and I'll edit in comments.
%~ shared setup ~%
clc,clearvars%better than clear all, better still is to use functions
mu=7;
my=7;
me=7;
delay=1;
degree=2;
totalD=my+mu+me;
%~ my code ~%
v=sort(repmat(1:(totalD+1),1,degree+1))-1;
selection=unique(nchoosek(v,degree+1),'rows');
polyPow=zeros(size(selection,1),totalD);
for row=1:size(selection,1)
for col=1:size(selection,2)
if selection(row,col)~=0
c=selection(row,col);
polyPow(row,c)=polyPow(row,c)+1;
end
end
end
polyPow(sum(polyPow,2)>degree,:) = [];
polyPow=unique(polyPow,'rows');
try
%~ your code ~%
A = cell(totalD,1);
[A{1:totalD}] = ndgrid([0:degree]);
polyPow_old=[];
for k=1:totalD
polyPow_old(:,k)=reshape(A{k},[],1);
end
polyPow_old(sum(polyPow_old,2)>degree,:) = [];
catch
polyPow_old=[];
end
%~ check equivalence ~%
if ~isequal(sortrows(polyPow),sortrows(polyPow_old))
if ~isempty(polyPow_old)
error('oops')
end
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!