Transformation of the complex plan: Conformal Mapping
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have to write a code in Matlab that explains a conformal mapping under the transformation w=z^2+1/z. How can I do that?(I've already read the link: Exploring a Conformal Mapping, but with this particular transformation I failed).
12 Kommentare
Antworten (3)
Anton Semechko
am 9 Jul. 2018
Bearbeitet: Anton Semechko
am 9 Jul. 2018
Modified code ('conformal_map_demo') is attached below. In principle, this piece of code should should allow you to visualize any complex analytic function. You just have to modify the 'f' function manually.
Example for f=z^2

Example for f=z^2+1/z

function conformal_map_demo
% Grid settings
XLim=5*[-1 1];
n = 20;
dX=(XLim(2)-XLim(1))/n;
% Initialize figure
figure
ha1=subplot(1, 2, 1);
title ('Grid of Squares')
axis('equal')
hold on
ha2=subplot(1, 2, 2);
title ('Image Of Grid Under w = z^2 + 1/z')
axis('equal')
hold on
% ============================== PRE-IMAGE ================================
axes(ha1)
% Draw reference square at top-right corner
% -------------------------------------------------------------------------
su=[0 0; 1 0; 1 1; 0 1]; % unit square
s=bsxfun(@plus,dX*su,XLim(2)*[1 1]-dX);
fill(s(:,1),s(:,2),[0.9 0.9 0.9])
% Draw vertical grid lines at dX intervals
% -------------------------------------------------------------------------
for x=XLim(1):dX:XLim(2)
plot(x*ones(1,2),XLim,'b')
end
% Draw horizontal grid lines at dX intervals
% -------------------------------------------------------------------------
for y=XLim(1):dX:XLim(2)
plot(XLim,y*ones(1,2), 'r')
end
% Draw Unit Tangents for the reference square
% -------------------------------------------------------------------------
x1 = XLim(2)-dX;
y1 = x1;
% 1. Draw the Unit Tangent in the i-direction
a = [x1 x1];
b = y1 + dX*[0 1];
line(a, b, 'linewidth',3, 'color', 'blue')
% 2. Draw the Unit Tangent in the r-direction
a = x1 + dX*[0 1];
b = [y1 y1];
line(a,b, 'linewidth',3, 'color', 'red')
hold off
% Set axes domain, and range
axis((XLim(2)+dX)*[-1 1 -1 1])
% ================================ IMAGE ==================================
axes(ha2)
f=@(z) z.^2 + 1./z;
% Draw the image of the reference square
% -------------------------------------------------------------------------
% Subdivide original reference square; to insert more points between corners
for i=1:8
s_new=(s+circshift(s,[-1 0]))/2;
s=reshape(cat(1,s',s_new'),2,[]);
s=s';
end
f_s=f(s(:,1)+1i*s(:,2));
fill(real(f_s),imag(f_s),[0.9 0.9 0.9])
% Draw images of the vertical lines
% -------------------------------------------------------------------------
BB=Inf*[1 -1;1 -1];
yy=linspace(XLim(1),XLim(2),1E3)';
for x = XLim(1):dX:XLim(2);
w=f(x*ones(1E3,1) + 1i*yy);
u=real(w);
v=imag(w);
plot(u,v,'-b')
if x~=0
BB(:,1)=min(BB(:,1),[min(u);min(v)]);
BB(:,2)=max(BB(:,2),[max(u);max(v)]);
end
end
% Draw the images of the horizontal lines
% -------------------------------------------------------------------------
xx=yy;
for y = XLim(1):dX:XLim(2);
w=f(xx+1i*y*ones(1E3,1));
u=real(w);
v=imag(w);
plot(u,v,'-r')
if y~=0
BB(:,1)=min(BB(:,1),[min(u);min(v)]);
BB(:,2)=max(BB(:,2),[max(u);max(v)]);
end
end
% Draw the images of the unit tangents under w
% -------------------------------------------------------------------------
% Jacobian the map
syms x y
Jxx=diff(real(f(x+1i*y)),'x');
Jxy=diff(real(f(x+1i*y)),'y');
Jyy=diff(imag(f(x+1i*y)),'y');
Jyx=diff(imag(f(x+1i*y)),'x');
J=[Jxx Jxy; Jyx Jyy];
% Evaluate Jacobian at the bottom-left corner of the reference square
c=XLim(2)*[1 1];
Jc=dX*double(subs(J,[x,y],c));
% Visualize new tangent vectors at c
[Ux,Uy]=deal([real(f_s(1)) imag(f_s(1))]);
Ux=[Ux;Ux+Jc(:,1)'];
Uy=[Uy;Uy+Jc(:,2)'];
plot(Ux(:,1),Ux(:,2),'-r','LineWidth',3)
plot(Uy(:,1),Uy(:,2),'-b','LineWidth',3)
% Set axes domain and range
BB(:,1)=min(BB(:,1),min([Ux;Uy])');
BB(:,2)=max(BB(:,2),max([Ux;Uy])');
dB=BB(:,2)-BB(:,1);
BB(:,1)=BB(:,1)-0.025*dB;
BB(:,2)=BB(:,2)+0.025*dB;
set(ha2,'XLim',BB(1,:),'YLim',BB(2,:))
0 Kommentare
abd abd1
am 13 Sep. 2019
here is my code in MATLAB to generate julia set in complex domain
0 Kommentare
Siehe auch
Kategorien
Mehr zu Blue finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!