How do you generate a Cumulative Histogram on R2014a?
51 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to produce a Cummulative Histogram on MatLab so I can work out the 50% and 99% Percentiles in a set of data. I was shown and given a piece of code that will work on a newer version of MatLab but the only versions I have access to is MatLab R2014a which I have learned does not use the same commands as the newer versions. The section of code I am trying to use is shown below.
figure
histogram(wSpd,'Normalization','cdf'); % plot the cumulative histogram
y = quantile(wSpd, [0.5 0.99]); % extract the 50th and 99th quantiles (median and extreme)
As far as I know, hist is one of the options, but I have not been able to find any documentation for 2014a, only 2018a. Is there a way of doing what this section of code does in R2014a?
0 Kommentare
Antworten (2)
Image Analyst
am 5 Jul. 2018
You can get the counts with histcounts(), and then use cumsum(counts).
2 Kommentare
Image Analyst
am 6 Jul. 2018
Did you look up those functions? You just do
[counts, bins] = histcounts(data);
cdf = cumsum(counts);
Luckily, Anton gave you a full demo below in his answer.
Anton Semechko
am 5 Jul. 2018
Bearbeitet: Anton Semechko
am 5 Jul. 2018
Here is an example of how to use 'histcounts' and estimate percentiles:
% Simulate data; N samples from standard Guassian PDF
N=1E4;
X=randn(N,1);
% Bin data into B bins of equal size
X_min=min(X);
X_max=max(X);
B=50; % # of bins between X_min and X_max
dB=(X_max-X_min)/B; % bin size
BE=(X_min-dB):dB:(X_max+dB); % bin edges; first and last edges are at X_min-dB and X_max+dB
H=histcounts(X,BE); % histogram of X
MDF=H/N; % mass density function
Bc=(BE(2:end)+BE(1:(end-1)))/2; % bin centroids
% Cumulative mass function
CMF=cumsum(MDF);
% Esimate 50-th and 99-th percentiles
p=[50 99]/100;
Xp=zeros(size(p));
X_srt=sort(X);
CMF_raw=cumsum(ones(1,N))/N;
for i=1:numel(p)
[Ya,id_a]=find(CMF_raw<=p(i),1,'last');
[Yb,id_b]=find(CMF_raw>=p(i),1,'first');
if (Ya-p(i))<eps || id_a==id_b
Xp(i)=X_srt(id_a);
continue
end
[Xa,Xb]=deal(X_srt(id_a),X_srt(id_b));
m=(Yb-Ya)/(Xb-Xa);
if abs(m)<eps
Xp(i)=(Xa+Xb)/2;
else
Xp(i)=(p(i)-Ya)/m+Xa;
end
end
% Visualize MDF along with specified percentiles
figure('color','w')
ha=subplot(1,2,1);
h=bar(Bc,MDF);
set(h,'FaceColor',0.75*[1 1 1],'EdgeColor','k')
hold on
YLim=get(ha,'YLim');
col=zeros(numel(p),3);
for i=1:numel(p)
h=plot(Xp(i)*ones(2,1),YLim(:),'--','LineWidth',2);
col(i,:)=get(h,'Color');
end
set(get(ha,'Title'),'String','Normalized Histogram','FontSize',20)
% Visualize CDF
ha=subplot(1,2,2);
h=bar(Bc,CMF);
set(h,'FaceColor',0.75*[1 1 1],'EdgeColor','k')
hold on
XLim=get(ha,'XLim');
for i=1:numel(p)
plot(Xp(i)*ones(2,1),[0;p(i)],'--','LineWidth',2,'Color',col(i,:))
plot([XLim(1);Xp(i)],p(i)*ones(2,1),'--','LineWidth',2,'Color',col(i,:))
end
set(get(ha,'Title'),'String','Cumulative Mass Function','FontSize',20)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Histograms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!