how to get aic from gapfill function?

1 Ansicht (letzte 30 Tage)
Peter Mills
Peter Mills am 2 Jul. 2018
Bearbeitet: Peter Mills am 2 Jul. 2018
How do I get the values of aic for MATLAB gapfill function?
load mtlb
gn = 3;
mt = mtlb;
gl = randi([300 600],gn,1);
for kj = 1:gn
mt(kj*1000+randi(100)+(1:gl(kj))) = NaN;
end
lb = fillgaps(mt,4001,'aic');
How do I get the aic values that were used to optimize for model as outputs? How do I get the mae and rmse of the accuracy of each prediction of missing values?
I have tried a for loop of model order but it works out very slow.
order=1:4001;
MAEmetric=length(order);
RMSEmetric=length(order);
for i=1:4001
lb = fillgaps(mt,4001,order(i));
MAEmetric(i)=mae(mtlb,lb);
RMSEmetric(i)=rmse(mtlb,lb);
end
The following function is required for rmse
function r=rmse(data,estimate)
% Function to calculate root mean square error from a data vector or matrix
% and the corresponding estimates.
% Usage: r=rmse(data,estimate)
% Note: data and estimates have to be of same size
% Example: r=rmse(randn(100,100),randn(100,100));
% delete records with NaNs in both datasets first
I = ~isnan(data) & ~isnan(estimate);
data = data(I); estimate = estimate(I);
r=sqrt(sum((data(:)-estimate(:)).^2)/numel(data));

Antworten (0)

Kategorien

Mehr zu Monte-Carlo finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by