How to solve det(s^2*M+s*C(s)+K)=0 for s as fast as posible

2 Ansichten (letzte 30 Tage)
Rodrigo Moscoso Cires
Rodrigo Moscoso Cires am 1 Jul. 2018
Beantwortet: Sergey Kasyanov am 6 Jul. 2018
Hello, I want to solve the equation:
det(s^2*M+s*C(s)+K)=0
for s. In this equation M, C and K are big (at least 100x100), sparse matrices and C depends on s (it has the term (50/(s+50)) in it). Is there a faster way to solve this besides the following procedure?:
  1. using the symbolic variable "s"
  2. finding the determinant with the command det(s^2*M+s*C(s)+K)
  3. solve the equation using the command solve(det(s^2*M+s*C(s)+K==0,s) and then
  4. vpa(solve(det(s^2*M+s*C(s)+K)==0,s))
I tried to use polyeig(s^2*M+s*C(s)+K) as an alternative, but it just solves the equation for a constant C and not for C(s).

Antworten (1)

Sergey Kasyanov
Sergey Kasyanov am 6 Jul. 2018
You can try to use that code from there:
A=GaussElimination(s^2*M+s*C+K,'');
[~,d]=numden(A(end,end));
Solution=solve(d,s);
You must define C as symbolic matrix. Also I don't ensure that it will be work right, but you can rewrite GaussElimination() for your purpose (function GaussElimination() was wrote fast and for solving another narrow problem, but sometimes I use it for determinant calculation).

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Tags

Noch keine Tags eingegeben.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by