add white gaussian noise

8 Ansichten (letzte 30 Tage)
Jessie Bessel
Jessie Bessel am 19 Jun. 2018
Bearbeitet: Meg Noah am 7 Aug. 2025
I tried to add noise to a signal. The signal noise ratio must be 0 dB. I tried with
signal_noise=awgn(signal,0,'measured')
Is there any method?

Antworten (2)

OCDER
OCDER am 19 Jun. 2018
signal_noise=awgn(signal,1,'measured')
SNR = 1 means 0 dB.
  2 Kommentare
Jessie Bessel
Jessie Bessel am 19 Jun. 2018
Ok.Any method, without awgn?
OCDER
OCDER am 19 Jun. 2018
noise = sig * randn(size(signal)); %sig is your standard dev.
signa_noise = signal + noise %you have to determine value of "sig".
%sig = std(signal) ?

Melden Sie sich an, um zu kommentieren.


Meg Noah
Meg Noah am 7 Aug. 2025
Bearbeitet: Meg Noah am 7 Aug. 2025
% signal is a sine wave of 2 Hz
nSamples = 1000;
f = 2; % [Hz]
time = linspace(0, 2, nSamples+1);
signal = sin(2*pi*f*time);
signal_noise=awgn(signal,0,'measured');
% calculate the signal power
signalPower = sum((signal).^2)./nSamples;
% the gaussian white noise
noiseValues = signal_noise - signal;
% verify the Signal-to-Noise value
noisePower = sum(noiseValues.^2)/numel(noiseValues);
SNR = 10*log10(signalPower/noisePower);
fprintf(1,"standard deviation of noise = %f\n", std(noiseValues));
standard deviation of noise = 0.720478
fprintf(1,"SNR: %f\n", SNR);
SNR: -0.158400
% Method WITHOUT the awgn
% SNR in db is 10log(Psignal/Pnoise)
snrDb = 0; % [dB]
% noise power such that signal power is 10 dB more
% 10 = 10 log (Ps / Pn)
% Pn is variance which for zero mean gaussian noise
% is essentially - square sum of all samples -> divided by numSamples
noiseStd = sqrt(signalPower / 10^(snrDb/10));
noiseMean = 0;
% generate the gaussian white noise
noiseValues = noiseStd*randn(nSamples,1) + noiseMean;
% verify the Signal-to-Noise value
noisePower = sum(noiseValues.^2)/numel(noiseValues);
SNR = 10*log10(signalPower/noisePower);
fprintf(1,"noiseStd: model input: %f simulation output: %f\n", noiseStd, std(noiseValues));
noiseStd: model input: 0.707107 simulation output: 0.699265
fprintf(1,"SNR: %f\n", SNR);
SNR: 0.094870

Kategorien

Mehr zu Propagation and Channel Models finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by