how to plot confusionmat for this code?

1 Ansicht (letzte 30 Tage)
susanta reang
susanta reang am 18 Jun. 2018
close all clear all clc delete('Frames\*.jpg'); [filename pathname] = uigetfile({'*.avi'},'Select A Video File'); I = VideoReader([pathname,filename]); implay([pathname,filename]); pause(3); nFrames = I.numberofFrames; vidHeight = I.Height; vidWidth = I.Width; mov(1:nFrames) = ... struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 'colormap', []); WantedFrames = 50; for k = 1:WantedFrames mov(k).cdata = read( I, k); mov(k).cdata = imresize(mov(k).cdata,[256,256]); imwrite(mov(k).cdata,['Frames\',num2str(k),'.jpg']); end
for I = 1:WantedFrames im=imread(['Frames\',num2str(I),'.jpg']); figure(1),subplot(5,10,I),imshow(im); end clc for i=1:WantedFrames disp(['Processing frame no.',num2str(i)]); img=imread(['Frames\',num2str(i),'.jpg']); f1=il_rgb2gray(double(img)); [ysize,xsize]=size(f1); nptsmax=40; kparam=0.04; pointtype=1; sxl2=4; sxi2=2*sxl2; % detect points [posinit,valinit]=STIP(f1,kparam,sxl2,sxi2,pointtype,nptsmax); Test_Feat(i,1:40)=valinit; %imshow(f1,[]), hold on % axis off; % showellipticfeatures(posinit,[1 1 0]); % title('Feature Points','fontsize',12,'fontname','Times New Roman','color','Black') end
% Use KNN To classify the videos load('TrainFeature.mat') X = meas; Y = New_Label; Z = Test_Feat; % Now Classify
%ens = fitensemble(X,Y,'Subspace',300,'KNN'); %class = predict(ens,Z(1,:)) md1 = ClassificationKNN.fit(X,Y); Type = predict(md1,Z); if (Type == 1) disp('Boxing'); helpdlg(' Boxing '); elseif (Type == 2) disp('Hand Clapping'); helpdlg('Hand Clapping'); elseif (Type == 3) disp('Hand Waving'); helpdlg('Hand Waving'); elseif (Type == 4) disp('Jogging'); helpdlg('Jogging'); elseif (Type == 5) disp('Running'); helpdlg('Running'); elseif (Type == 6) disp('Walking'); helpdlg('Walking'); elseif (Type == 7) disp('Cycling'); helpdlg('Cycling'); elseif (Type == 8) disp('Surfing'); helpdlg('Surfing'); end

Antworten (1)

Yuvaraj Venkataswamy
Yuvaraj Venkataswamy am 18 Jun. 2018
if true
plotconfusion(actual_labels,Predicted_labels)
end
In this, Predicted_labels are which you have classified through KNN and actual_labels are the true labels.

Kategorien

Mehr zu Text Data Preparation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by