SVM classification weight fitcsvm
25 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I am training a linear SVM classifier:
cvFolds = crossvalind('Kfold', labels, nrFolds);
for i = 1:nrFolds % iteratre through each fold
testIdx = (cvFolds == i); % indices of test instances
trainIdx = ~testIdx; % indices training instances
% train the SVM
% 'OptimizeHyperparameters','auto'
cl = fitcsvm(features(trainIdx,:), labels(trainIdx),'KernelFunction',kernel,'Standardize',true,...
'BoxConstraint',C,'ClassNames',[0,1], 'Solver', solver);
[labelPred,scores] = predict(cl, features(testIdx,:));
eq = sum(labelPred==labels(testIdx));
accuracy(i) = eq/numel(labels(testIdx));
end
As is obvious, the trained SVM model is stored in cl. Checking the model parameters in cl I do not see which parameters correspond to classifier weight - feedback much appreciated.
1 Kommentar
Antworten (1)
Siehe auch
Kategorien
Mehr zu Classification Learner App finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!