SVM classification weight fitcsvm

25 Ansichten (letzte 30 Tage)
Pegah Kassraian Fard
Pegah Kassraian Fard am 11 Jun. 2018
Kommentiert: Ramya k am 7 Dez. 2020
Hi,
I am training a linear SVM classifier:
cvFolds = crossvalind('Kfold', labels, nrFolds);
for i = 1:nrFolds % iteratre through each fold
testIdx = (cvFolds == i); % indices of test instances
trainIdx = ~testIdx; % indices training instances
% train the SVM
% 'OptimizeHyperparameters','auto'
cl = fitcsvm(features(trainIdx,:), labels(trainIdx),'KernelFunction',kernel,'Standardize',true,...
'BoxConstraint',C,'ClassNames',[0,1], 'Solver', solver);
[labelPred,scores] = predict(cl, features(testIdx,:));
eq = sum(labelPred==labels(testIdx));
accuracy(i) = eq/numel(labels(testIdx));
end
As is obvious, the trained SVM model is stored in cl. Checking the model parameters in cl I do not see which parameters correspond to classifier weight - feedback much appreciated.
  1 Kommentar
Ramya k
Ramya k am 7 Dez. 2020
how to find Sensitivity of above code?

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Prashant Lawhatre
Prashant Lawhatre am 17 Nov. 2018
weight_vector=c1.Beta;
bais_vector=c1.Bias;

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by