TreeBagger parameter tuning for classification
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How can I tune parameters for TreeBagger model for classification, I followed the example:"Tune Random Forest Using Quantile Error and Bayesian Optimization", https://fr.mathworks.com/help/stats/tune-random-forest-using-quantile-error-and-bayesian-optimization.html I only changed "regression" with "classification". The following code generated multiple errors:
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);
errors:
Error using classreg.learning.internal.table2FitMatrix>resolveName (line 232)
One or more 'ResponseName' parameter values are invalid.
Error in classreg.learning.internal.table2FitMatrix (line 77)
ResponseName = resolveName('ResponseName',ResponseName,FormulaResponseName,false,VarNames);
Error in ClassificationTree.prepareData (line 557)
[X,Y,vrange,wastable,varargin] =
classreg.learning.internal.table2FitMatrix(X,Y,varargin{:},'OrdinalIsCategorical',false);
Error in TreeBagger/init (line 1335)
ClassificationTree.prepareData(x,y,...
Error in TreeBagger (line 615)
bagger = init(bagger,X,Y,makeArgs{:});
Error in oobErrRF2 (line 16)
randomForest = TreeBagger(300,X,'MPG','Method','classification',...
Error in @(params)oobErrRF2(params,trainingDataFeatures)
Error in BayesianOptimization/callObjNormally (line 2184)
Objective = this.ObjectiveFcn(conditionalizeX(this, X));
Error in BayesianOptimization/callObjFcn (line 2145)
= callObjNormally(this, X);
Error in BayesianOptimization/callObjFcn (line 2162)
= callObjFcn(this, X);
Error in BayesianOptimization/performFcnEval (line 2128)
ObjectiveFcnObjectiveEvaluationTime, this] = callObjFcn(this, this.XNext);
Error in BayesianOptimization/run (line 1836)
this = performFcnEval(this);
Error in BayesianOptimization (line 450)
this = run(this);
Error in bayesopt (line 287)
Results = BayesianOptimization(Options);
I would like to know if there is a way to use this method of tuning for classification. If not, how can I tune my parameters for a TreeBagger classifier. Thanks.
2 Kommentare
Don Mathis
am 8 Jun. 2018
What version of MATLAB are you using? That's not the error I get using R2018a
Antworten (1)
Don Mathis
am 8 Jun. 2018
The following works for me in R2018a. It predicts 'Cylinders' (3 classes) and it calls oobError to get the misclassification rate of the ensemble.
load carsmall
Cylinders = categorical(Cylinders);
Mfg = categorical(cellstr(Mfg));
Model_Year = categorical(Model_Year);
X = table(Acceleration,Cylinders,Displacement,Horsepower,Mfg,...
Model_Year,Weight,MPG);
rng('default'); % For reproducibility
maxMinLS = 20;
minLS = optimizableVariable('minLS',[1,maxMinLS],'Type','integer');
numPTS = optimizableVariable('numPTS',[1,size(X,2)-1],'Type','integer');
hyperparametersRF = [minLS; numPTS];
results = bayesopt(@(params)oobErrRF(params,X),hyperparametersRF,...
'AcquisitionFunctionName','expected-improvement-plus','Verbose',1);
bestOOBErr = results.MinObjective
bestHyperparameters = results.XAtMinObjective
Mdl = TreeBagger(300,X,'Cylinders','Method','classification',...
'MinLeafSize',bestHyperparameters.minLS,...
'NumPredictorstoSample',bestHyperparameters.numPTS);
function oobErr = oobErrRF(params,X)
%oobErrRF Trains random forest and estimates out-of-bag quantile error
% oobErr trains a random forest of 300 regression trees using the
% predictor data in X and the parameter specification in params, and then
% returns the out-of-bag quantile error based on the median. X is a table
% and params is an array of OptimizableVariable objects corresponding to
% the minimum leaf size and number of predictors to sample at each node.
randomForest = TreeBagger(300,X,'Cylinders','Method','classification',...
'OOBPrediction','on','MinLeafSize',params.minLS,...
'NumPredictorstoSample',params.numPTS);
oobErr = oobError(randomForest, 'Mode','ensemble');
end
9 Kommentare
Don Mathis
am 26 Jun. 2018
>> load networkTraffic.mat
>> proto= categorical(cellstr(proto));
Undefined function or variable 'proto'.
Marta Caneda Portela
am 6 Sep. 2022
What if we need to do kFold validation to optimize hyperparameters?
Siehe auch
Kategorien
Mehr zu Classification Ensembles finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!