# Solve nonlinear equation with positive solution (fsolve)

89 Ansichten (letzte 30 Tage)
Benjamin Wodey am 7 Jun. 2018
Kommentiert: Benjamin Wodey am 8 Jun. 2018
Hello, I would like to solve 3 non linear equation:
F(1) = 0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140;
F(2) = 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970;
F(3) = 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380;
Here, x is 3 different young modulus and my problem is, using fsolve give me negative values... Do you know if it's possible to find positive values or should I try another way ?
##### 2 Kommentare1 älteren Kommentar anzeigen1 älteren Kommentar ausblenden
Benjamin Wodey am 7 Jun. 2018
right!

Melden Sie sich an, um zu kommentieren.

### Antworten (2)

sloppydisk am 7 Jun. 2018
You can set an assumption on the equations using assume, in this case there seem to be no solutions for this problem.
x = sym('x', [3 1]);
F(1) = 0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140==0;
F(2) = 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970==0;
F(3) = 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380==0;
assume(x>=0)
sol1 = solve(F, x)
##### 1 KommentarKeine anzeigenKeine ausblenden
Benjamin Wodey am 8 Jun. 2018
okay, so maybe I have to find other equations to solve my problem

Melden Sie sich an, um zu kommentieren.

Star Strider am 7 Jun. 2018
I am not certain what the values of ‘x’ should be.
Try these:
fcn = @(x) [0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140; 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970; 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380];
[xs,fv] = fsolve(@(x) norm(fcn(x)), [1; 1; 1])
[xs,fv] = fmincon(@(x) sum(fcn(x)), [1; 1; 1], [], [], [], [], [0; 0; 0],[1; 1; 1]*Inf)
The first one provides a sort of ‘pseudo-constraint’ using the norm of the output. The second uses fmincon to constrain the parameters, however since it requires that the argument function return a scalar, leaves that as a problem for you to solve. (I arbitrarily chose to sum them here.)
##### 0 Kommentare-1 ältere Kommentare anzeigen-1 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

### Kategorien

Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange

R2017b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by