Solve nonlinear equation with positive solution (fsolve)

22 Ansichten (letzte 30 Tage)
Benjamin Wodey
Benjamin Wodey am 7 Jun. 2018
Kommentiert: Benjamin Wodey am 8 Jun. 2018
Hello, I would like to solve 3 non linear equation:
F(1) = 0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140;
F(2) = 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970;
F(3) = 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380;
Here, x is 3 different young modulus and my problem is, using fsolve give me negative values... Do you know if it's possible to find positive values or should I try another way ?
Thank for yours answers
  2 Kommentare
sloppydisk
sloppydisk am 7 Jun. 2018
I assume you're setting each of the three expressions to zero?

Melden Sie sich an, um zu kommentieren.

Antworten (2)

sloppydisk
sloppydisk am 7 Jun. 2018
You can set an assumption on the equations using assume, in this case there seem to be no solutions for this problem.
x = sym('x', [3 1]);
F(1) = 0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140==0;
F(2) = 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970==0;
F(3) = 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380==0;
assume(x>=0)
sol1 = solve(F, x)
  1 Kommentar
Benjamin Wodey
Benjamin Wodey am 8 Jun. 2018
okay, so maybe I have to find other equations to solve my problem
thank you for your answer

Melden Sie sich an, um zu kommentieren.


Star Strider
Star Strider am 7 Jun. 2018
I am not certain what the values of ‘x’ should be.
Try these:
fcn = @(x) [0.44*x(1) + 0.23*x(2) + 0.33*x(3) - 5140; 0.23*x(1) + 0.44*x(2) + 0.33*x(3) - 4970; 4*(0.44 + 0.23)*(x(1)*x(2)/(3*x(2)+x(1))) + 0.33*x(3) - 4380];
[xs,fv] = fsolve(@(x) norm(fcn(x)), [1; 1; 1])
[xs,fv] = fmincon(@(x) sum(fcn(x)), [1; 1; 1], [], [], [], [], [0; 0; 0],[1; 1; 1]*Inf)
The first one provides a sort of ‘pseudo-constraint’ using the norm of the output. The second uses fmincon to constrain the parameters, however since it requires that the argument function return a scalar, leaves that as a problem for you to solve. (I arbitrarily chose to sum them here.)

Kategorien

Mehr zu Systems of Nonlinear Equations finden Sie in Help Center und File Exchange

Produkte


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by