how can wirte this integration in matlab.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
file is attached
2 Kommentare
Walter Roberson
am 5 Jun. 2018
The solution depends upon the relationship between k and q, and can be further resolved by adding assumptions. Some of the solutions are infinite.
I was certain I had already posted this information.
Walter Roberson
am 5 Jun. 2018
I was right, I did post it. You asked the question in a different topic as well.. leading to duplicated effort. :(
The solution depends on whether k is positive, 0, or negative, and on the relative values of qs and 2*k . In some combinations of circumstances it is undefined. MATLAB is able to resolve some of the combinations if you add appropriate assumptions to the variables, but it is not able to tell you the full conditional resolution under other assumptions.
Antworten (2)
Paridhi Yadav
am 4 Jun. 2018
fun = @(q) q^4/(2*pi*(k^3)*((q + qs)^2)*sqrt(1-(q/2*k)^2));
jdp(k) = integral(fun,0,2*k);
0 Kommentare
Ameer Hamza
am 4 Jun. 2018
If you try to find a closed-form solution, then MATLAB is unable to solve for it for the given integral,
syms k q qs
integrand = 1/(2*pi*k^3*(q+qs)^2*sqrt(1-(q/(2*k))^2))*q^4;
J = int(integrand, q, 0, 2*k)
J =
int(q^4/(2*k^3*pi*(q + qs)^2*(1 - q^2/(4*k^2))^(1/2)), q, 0, 2*k)
The result is same as the input statement. But if you try to solve it numerically then you can do it as follow
integrand = @(q,qs,k) 1./(2*pi.*k.^3.*(q+qs).^2.*sqrt(1-(q./(2*k)).^2)).*q.^4;
J = @(k, qs) integral(@(q) integrand(q, qs, k), 0, 2*k);
qs = 1;
k = 10;
J(k, qs)
ans =
0.8855
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!