How do I use a for loop in my ode15s based code for shooting method and get multiple graphs?

2 Ansichten (letzte 30 Tage)
I am using ode15s solver to solve a set of odes by shooting technique and obtain graphs of the solutions.
while trying to vary some parameters in the equations I have used a for loop.
But I am not getting the proper graphs.
How do I use the 'for' loop properly to get the accurate graphs.
Here in the code below I need to vary for three values of the 'lambda' parameter, so that I could obtain 3 different graphs in one figure
function shooting_method
clc;clf;clear;
global lambda gama Pr Rd Lew Nb Nt Mn
gama=1;
Mn=6;
Rd=0.1;
Pr=10;
Nb=0.3;
Lew=10;
Nt=0.3;
pp = [0.5 1 1.5];
for i=1:numel(pp)
lambda = pp(i);
%lambda=0.5;
x=[1 1 1];
format long
options= optimset('Display','iter');
x1= fsolve(@solver,x);
end
end
function F=solver(x)
options= odeset('RelTol',1e-8,'AbsTol',[1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8]);
[t,u] = ode15s(@equation,linspace(0,2),[0 1 x(1) 1 x(2) 1 x(3)],options)
%sol= [t,u];
s=length(t);
F= [u(s,2),u(s,4),u(s,6)];
%y1 = deval(u(0,:))
plot(t,u(:,2),'LineWidth',2);hold on %t,u(:,4));
end
function dy=equation(t,y)
global lambda gama Pr Rd Lew Nb Nt Mn
dy= zeros(7,1);
dy(1)= y(2);
dy(2)= y(3)*(y(3)^2+gama^2)/(y(3)^2+lambda*gama^2);
dy(3)= y(2)^2/3-(2*y(1)*y(3)*(y(3)^2+gama^2))/(3*(y(3)^2+lambda*gama^2))+Mn*y(2);
dy(4)= y(5);
dy(5)= -(2*Pr*y(1)*y(5))/(3*(1+Rd)) - (Nb*y(5)*y(7))/(1+Rd) - (Nt*y(5)^2)/(1+Rd);
dy(6)= y(7);
dy(7)= -((2*Lew*y(1)*y(7))/3)+ (Nt/Nb)*((2*Pr*y(1)*y(5))/(3*(1+Rd)) + (Nb*y(5)*y(7))/(1+Rd) + (Nt*y(5)^2)/(1+Rd));
end

Antworten (1)

Torsten
Torsten am 29 Mai 2018
Bearbeitet: Torsten am 30 Mai 2018
function shooting_method
clc;clf;clear;
global lambda gama Pr Rd Lew Nb Nt Mn
gama=1;
Mn=6;
Rd=0.1;
Pr=10;
Nb=0.3;
Lew=10;
Nt=0.3;
pp = [0.5 1 1.5];
for i=1:numel(pp)
lambda = pp(i);
%lambda=0.5;
x=[1 1 1];
format long
options= optimset('Display','iter');
x1= fsolve(@solver,x);
options= odeset('RelTol',1e-8,'AbsTol',[1e-8 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8]);
[t,u] = ode15s(@equation,linspace(0,2,20),[0 1 x1(1) 1 x1(2) 1 x1(3)],options)
U(i,:,:)=u;
T(i,:)=t;
end
plot(T(1,:),U(1,:,2),T(2,:),U(2,:,2),T(3,:),U(3,:,2))
end
  3 Kommentare
Torsten
Torsten am 1 Jun. 2018
Of course,you will have to run the above modified function "shooting_method" together with your two functions "solver" and "equation" from above.
MINATI
MINATI am 11 Feb. 2019
Dear naygarp
Can you share the question or the paper of whose this is the code
minatipatra456@gmail.com

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by