Solve double integral using 'integral2'

32 Ansichten (letzte 30 Tage)
John Armitage
John Armitage am 17 Mai 2018
Bearbeitet: Torsten am 17 Mai 2018
Suppose I have this surface integral:
I use integral2 to solve the double integral but the result has complex number in it
My codes are:
syms x y z
format rat
x=sqrt(1-y.^2-z.^2)
xy=diff(x,y)
xz=diff(x,z)
dS = sqrt(100 + xy.^2 + xz.^2)
fun1 = subs((x+y+z).*dS)
f = matlabFunction(fun1)
Myz = integral2(f,0,10,0,@(y)sqrt(100-y.^2))
And the answer
f =
@(y,z)(y+z+sqrt(-y.^2-z.^2+1.0)).*sqrt(-y.^2./(y.^2+z.^2-1.0)-z.^2./(y.^2+z.^2-1.0)+1.0e2)
Warning: Reached the maximum number of function evaluations (10000). The result fails the global error test.
> In integral2Calc>integral2t (line 129)
In integral2Calc (line 9)
In integral2 (line 106)
In Untitled3 (line 18)
Myz =
139388/21 +97492/19i
What's the problem guys ? Thank you

Akzeptierte Antwort

Torsten
Torsten am 17 Mai 2018
Bearbeitet: Torsten am 17 Mai 2018
y = sqrt(100-x^2-z^2) or y = -sqrt(100-x^2-z^2)
->
I = integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x+sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx +
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} (x-sqrt(100-x^2-z^2)+z)*sqrt(1+x^2/(100-x^2-z^2)+z^2/(100-x^2-z^2)) dz dx =
integral_{x=0}^{x=10} integral_{z=0}^{z=sqrt(1-x^2)} 2*(x+z)*10/sqrt(100-x^2-z^2) dz dx
In MATLAB:
I = integral2(@(x,z)2*(x+z)*10./sqrt(100-x.^2-z.^2),0,10,0,@(x)sqrt(100-x.^2))
Best wishes
Torsten.

Weitere Antworten (0)

Kategorien

Mehr zu MATLAB finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by