How to plot a differential equation?

1 Ansicht (letzte 30 Tage)
Chong Zhang
Chong Zhang am 15 Mai 2018
Kommentiert: Chong Zhang am 17 Mai 2018
How to plot the differential equation
(x-2/3)*f'(x)=6*f(x)-2+[5*(x-1/3)^+]-5*f(min([x+1/3,2/3]))?
f(0)=0.8, x from 0 to 2/3
  8 Kommentare
Torsten
Torsten am 16 Mai 2018
1. Assume a value for f(1/3) and name it "fmiddle".
2. Solve the differential equation on the interval 1/3 <= x <= 2/3 using bvp4c with f(2/3) as a free parameter.
3. Solve the differential equation on the interval 0 <= x <=1/3 using ODE45 by using the solution from 2 to evaluate f(x+1/3).
4. Compare f(1/3) obtained from the solution in 3. and "fmiddle". If abs(f(1/3)-fmiddle) < tol, accept the solution for f. Otherwise update "fmiddle" and go to 2.
Best wishes
Torsten.
Chong Zhang
Chong Zhang am 16 Mai 2018
Will try. Thanks!

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 17 Mai 2018
Bearbeitet: Torsten am 17 Mai 2018
function main
% call root finder
estimate0 = 1.0;
estimate = fzero(@cycle,estimate0);
% call bvp4c for final value for f(1/3)
lambda = 1;
eps = 0.000000001;
solinit = bvpinit(linspace(1/3-eps,2/3-eps,20),@(x)mat4init(x,lambda,estimate),lambda);
sol1 = bvp4c(@mat4ode,@(ya,yb,lambda)mat4bc(ya,yb,lambda,estimate),solinit);
% call ode45 for final value for f(1/3)
x0 = 0.8;
tspan = [0 1/3-eps];
sol2 = ode45(@(x,y)fun_ode45(x,y,sol1),tspan,x0);
% plot entire curve
x1 = linspace(0,1/3-eps,20);
S1 = deval(sol2,x1);
x2 = linspace(1/3-eps,2/3-eps,20);
S2 = deval(sol1,x2);
plot(x1,S1,x2,S2)
end
% function to calculate f(1/3)
function ret = cycle(estimate)
% call bvp4c
lambda = 1;
eps = 0.000000001;
solinit = bvpinit(linspace(1/3-eps,2/3-eps,20),@(x)mat4init(x,lambda,estimate),lambda);
sol = bvp4c(@mat4ode,@(ya,yb,lambda)mat4bc(ya,yb,lambda,estimate),solinit);
%call ode45
x0 = 0.8;
tspan = [0 1/3-eps];
[X,Y]=ode45(@(x,y)fun_ode45(x,y,sol),tspan,x0);
ret = Y(end)-estimate;
end
% functions for bvp4c
% ------------------------------------------------------------
function dydx = mat4ode(x,y,lambda)
dydx = (6*y(1)-2+5*(x-1/3)-5*lambda)/(x-2/3);
end
% ------------------------------------------------------------
function res = mat4bc(ya,yb,lambda,estimate)
res = [ya(1)-estimate ; yb(1)-lambda];
end
% ------------------------------------------------------------
function yinit = mat4init(x,lambda,estimate)
yinit = estimate+3*(x-1/3)*(lambda-estimate);
end
% function for ode45
function dydx = fun_ode45(x,y,sol)
interpolation = deval(sol,x+1/3);
dydx =(6*y(1)-2-5*interpolation)/(x-2/3);
end
Dirty code, but it works.
Best wishes
Torsten.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by