
Simulate a five-state absorbing Markov chain
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
MCT001
am 6 Mai 2018
Kommentiert: Akira Agata
am 7 Mai 2018
I am trying to solve this problem :

this my code so far and getting errors:
N=1; % Number of experiments
n=15; % Number of transitions to be computed
X=char(zeros(n,N)); % Each column of X represents one of the N experiments
S=char(n,1); % Initialize the state array
M=zeros(n,5); % M contains the experimental probabilities for states S & R & N
p00=1; p01=0; p02=0; p03=0; p04=0;
p10=0.3; p11=0; p12=0.7; p13=0; p14=0;
p20=0; p21=0.5; p22=0; p23=0.5; p24=0;
p30=0; p31=0; p32=0.6; p33=0; p34=0.4;
p40=0; p41=0; p42=0; p43=0; p44=1;
for j=1:N
s0=randi(4,1);
S(1)=s0;
for k=1:n-1
r=rand(); s=S(k);
if s=='1'
if r<=p12, S(k+1)='2'; end
elseif s=='2'
if r<=p21, S(k+1)='1'; elseif r>p23, S(k+1)='3'; end
elseif s=='3'
if r<=p32, S(k+1)='2'; elseif r>p34, S(k+1)='4'; end
elseif s=='4'
if r<=p44, S(k+1)='4';end
end
end
X(:,j)=S;
end
% code
%end
for j=1:n
x=X(j,:);
ma=length(find(x==1));
mb=length(find(x==2));
mc=length(find(x==3));
md=length(find(x==4));
M(j,:)=[ ma mb mc md ];
end
%
nv=0:n-1;
figure(1);
plot(nv, M,'*:');
title('Simulation results -- States A & B');
xlabel('Step number');
ylabel('State');
%
0 Kommentare
Akzeptierte Antwort
Akira Agata
am 7 Mai 2018
If you have Statistics and Machine Learning Toolbox, you can do this much easier, like:
% Transition matrix
trans = [...
1 0 0 0 0;...
0.3 0 0.7 0 0;...
0 0.5 0 0.5 0;...
0 0 0.6 0 0.4;...
0 0 0 0 1];
% To set the initial state to '2'
trans_hat = [...
0 0 0 1 0 0;
zeros(5,1) trans];
emis = ones(6)/6;
[~,states] = hmmgenerate(15,trans_hat,emis,...
'Statenames',{'tmp','0','1','2','3','4'});
% Show the result
figure
plot(str2double(states),'o-')
ylim([-0.2 4.2])
yticks(0:4)
xticks(0:15)

4 Kommentare
Akira Agata
am 7 Mai 2018
OK. Then, how about the following?
trans = [...
1 0 0 0 0;...
0.3 0 0.7 0 0;...
0 0.5 0 0.5 0;...
0 0 0.6 0 0.4;...
0 0 0 0 1];
nTrans = 15; % Number of transisiton
histState = zeros(1,nTrans);% History of visited state
initState = randi(5); % Randomly select the initial state
currState = initState;
for kk = 1:nTrans
currState = find(rand() <= cumsum(trans(currState,:)),1);
histState(kk) = currState;
end
figure
plot(0:15,[initState,histState]-1,'o-') % To adjust the state label to 0~4
xlabel('# of transision','FontSize',12)
ylabel('State','FontSize',12)
ylim([-0.2 4.2])
yticks(0:4)
xticks(0:15)

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Markov Chain Models finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!