HELP ME SOLVE THIS ANALYTICAL SOLUTION
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Vetrichelvan Pugazendi
am 24 Apr. 2018
Kommentiert: Vetrichelvan Pugazendi
am 24 Apr. 2018

here's the coding that i did for part a so far
clc
clear all
close all
%%Parameters of Blasius Equation
U_inf = 1;
L = 10;
mu = 1.789E-5;
rho = 1.225;
nu = mu/rho;
A = sqrt(nu/U_inf);
h = 0.01;
%%Numerical Solution of Blasius Equation Using Runge-Kutta
f1 = @(x, y1, y2, y3) y2;
f2 = @(x, y1, y2, y3) y3;
f3 = @(x, y1, y2, y3) -y1*y3;
eta = 0:h:10;
x = 0:h:10;
y1(1) = 0;
y2(1) = 0;
y3(1) = 0.4696;
for i = 1:(length(eta)-1)
a = h.*[f1(eta(i), y1(i), y2(i), y3(i)), f2(eta(i), y1(i), y2(i), y3(i)), f3(eta(i), y1(i), y2(i), y3(i))];
b = h.*[f1(eta(i), y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f2(eta(i)+h/2, y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2), f3(eta(i)+h/2, y1(i)+a(1)/2, y2(i)+a(2)/2, y3(i)+a(3)/2)];
c = h.*[f1(eta(i), y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f2(eta(i)+h/2, y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2), f3(eta(i)+h/2, y1(i)+b(1)/2, y2(i)+b(2)/2, y3(i)+b(3)/2)];
d = h.*[f1(eta(i), y1(i)+c(1), y2(i)+c(2), y3(i)+c(3)), f2(eta(i)+h, y1(i)+c(1), y2(i)+c(2), y3(i)+c(3)), f3(eta(i)+h, y1(i)+c(1), y2(i)+c(2), y3(i)+c(3))];
y3(i+1) = y3(i)+ 1/6*(a(3)+2*b(3)+2*c(3)+d(3));
y2(i+1) = y2(i)+ 1/6*(a(2)+2*b(2)+2*c(2)+d(2));
y1(i+1) = y1(i)+ 1/6*(a(1)+2*b(1)+2*c(1)+d(1));
end
%%Plotting and Visualization
figure(1)
plot(eta,y1,eta, y2, eta, y3, 'LineWidth', 2)
xlim([0 10])
title('Solution of Blasius eqution', 'FontSize', 14);
xlabel('f, f'' and f''''', 'FontSize', 20);
ylabel('\eta', 'FontSize', 20);
grid on
Legend1 = {'f(\eta)', 'f''(\eta)', 'f''''(\eta)'};
legend(Legend1, 'FontSize', 14);
using the above code solve for energy equation.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Signal Generation, Analysis, and Preprocessing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!