how can I replace the softmax layer with another classifier as svm in convolution network
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.
1 Kommentar
Antworten (4)
Johannes Bergstrom
am 17 Apr. 2018
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html
Nagwa megahed
am 21 Apr. 2022
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.
1 Kommentar
Saifullah Razali
am 19 Feb. 2019
hello.. just wondering.. have u got the answer yet? i have the same exact problem
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!