How to plot ROC and calculate AUC form these data?
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi everyone
If I have targets and outputs in attach files. How can I plot ROC and calculate AUC by using these data ?
Thanks in advance
2 Kommentare
Hasan shovon
am 12 Apr. 2018
use this:
% code
function [auc,fpr,tpr] = fastAUC(labels,scores,plot_flag)
% function [auc,fpr,tpr] = myauc(labels,scores,plot_flag)
%
% This function calculates m AUC values for m ranked lists.
% n is the number of ranked items.
% m is the number of different rankings.
%
% Input: labels is nXm binary logical.
% scores is nXm real. For a high AUC the higher scores should have
% labels==1.
% plot_flag: binary flag, if TRUE then m ROC curves will be plotted
% (default FALSE).
%
% Output: auc is mX1 real, the Area Under the ROC curves.
% fpr is nXm real, the false positive rates.
% tpr is nXm real, the true positive rates.
if ~exist('plot_flag','var')
plot_flag = 0;
end
if ~islogical(labels)
error('labels input should be logical');
end
if ~isequal(size(labels),size(scores))
error('labels and scores should have the same size');
end
[n,m] = size(labels);
num_pos = sum(labels);
if any(num_pos==0)
error('no positive labels entered');
end
if any(num_pos==n)
error('no negative labels entered');
end
[~,scores_si] = sort(scores,'descend');
clear scores
scores_si_reindex = scores_si+ones(n,1)*(0:m-1)*n;
l = labels(scores_si_reindex);
clear scores_si labels
tp = cumsum(l==1,1);
fp = repmat((1:n)',[1 m])-tp;
num_neg = n-num_pos;
fpr = bsxfun(@rdivide,fp,num_neg); %False Positive Rate
tpr = bsxfun(@rdivide,tp,num_pos); %True Positive Rate
%Plot the ROC curve
if plot_flag==1
plot(fpr,tpr);
xlabel('False Positive');
ylabel('True Positive');
end
auc = sum(tpr.*[(diff(fp)==1); zeros(1,m)])./num_neg;
Antworten (1)
Siehe auch
Kategorien
Mehr zu Detection finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!