Code Vectorization in custom layer
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Rui Xiang
am 11 Apr. 2018
Kommentiert: Rui Xiang
am 16 Apr. 2018
Hi, we are designing a custom layer where we need to calculate the back-derivative from a 4D matrix
Here is a simple way using for loop to implement it
X = zeros(2,2,2,2);
X([1 5 7 10 12 14 16]) = rand(7,1);
kernelsize=5;
A=cell(2,1);
A{1}=rand(2,5);
A{2}=rand(2,5);
f=cell(2,1);
f{1}=rand(2,1);
f{2}=rand(2,1);
k = find(X);
[ii, jj, kk, ll] = ind2sub( size(X), k);
Z=zeros(size(X));
dLdW=zeros(2,5,2);
for j=1:kernelsize
for i=1:length(k)
Z(k(i))=X(k(i))*dot(A{jj(i)}(:,j),f{jj(i)});
end
sol=sum(Z,2);
dLdW(:,j,:)=sum(sol,4);
Z=zeros(size(X));
end
Is there a way to not use for loop? Because I want to use GPU to train it.
0 Kommentare
Akzeptierte Antwort
Joss Knight
am 15 Apr. 2018
Adotf = cellfun(@(aa,ff)ff.'*aa, A, f, 'UniformOutput', false);
Adotf = cat(1, Adotf{:});
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
Are all the A matrices and f vectors the same size? Because if so you shouldn't use a cell array, you should concatenate in dim 3 and use pagefun instead of cellfun (if you're using gpuArray).
A = cat(3, A{:});
f = cat(2, f{:});
f = shiftdim(f, -1);
Adotf = pagefun(@mtimes, f, A);
Adotf = permute(Adotf, [3 2 1]);
Z = X(k).*Adotf(jj,:);
j = repmat(1:kernelsize, numel(ii), 1);
ii = repmat(ii, 1, kernelsize);
kk = repmat(kk, 1, kernelsize);
dLdW = accumarray([ii(:), j(:), kk(:)], Z(:), [size(X,1) kernelsize, size(X,3)]);
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu GPU Computing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!