sir, I have tried the below code for the lung cancer detection but at the last part it showing the error "Index exceeds matrix dimensions'' why this error coming and how to fix it

23 Ansichten (letzte 30 Tage)
clc;
clear all;
close all;
% read the input CT image
I=imread('image5c.png');
figure
imshow(I);
title('INPUT CT IMAGE');
Igra1=rgb2gray(I);
figure
imshow(Igra1);
title('GRAY IMAGE');
Ifil2=medfilt2(Igra1,[3,3]);
figure
imshow(Ifil2);
title('FILTERED GRAY IMAGE');
text(732,501,'Image courtesy of Corel(R)',...
'FontSize',7,'HorizontalAlignment','right')
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(Ifil2), hy, 'replicate');
Ix = imfilter(double(Ifil2), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);
figure
imshow(gradmag,[]), title('Gradient magnitude (gradmag)')
L = watershed(gradmag);
Lrgb = label2rgb(L);
figure, imshow(Lrgb), title('Watershed transform of gradient magnitude (Lrgb)')
se = strel('disk', 20);
Io = imopen(Ifil2, se);
figure
imshow(Io), title('Opening (Io)')
Ie = imerode(Ifil2, se);
Iobr = imreconstruct(Ie, Ifil2);
figure
imshow(Iobr), title('Opening-by-reconstruction (Iobr)')
Ioc = imclose(Io, se);
figure
imshow(Ioc), title('Opening-closing (Ioc)')
Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);
figure
imshow(Iobrcbr), title('Opening-closing by reconstruction (Iobrcbr)')
fgm = imregionalmax(Iobrcbr);
figure
imshow(fgm), title('Regional maxima of opening-closing by reconstruction (fgm)')
I21 = Ifil2;
Ifil2(fgm) = 255;
figure
imshow(I21), title('Regional maxima superimposed on original image (I21)')
se2 = strel(ones(5,5));
fgm2 = imclose(fgm, se2);
fgm3 = imerode(fgm2, se2);
fgm4 = bwareaopen(fgm3, 20);
I3 = Ifil2;
I3(fgm4) = 255;
figure
imshow(I3)
title('Modified regional maxima superimposed on original image (fgm4)')
bw = imbinarize(Iobrcbr);
figure
imshow(bw), title('Thresholded opening-closing by reconstruction (bw)')
D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;
figure
imshow(bgm), title('Watershed ridge lines (bgm)')
gradmag2 = imimposemin(gradmag, bgm | fgm4);
L = watershed(gradmag2);
I4 = Ifil2;
I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;
figure
imshow(I4)
title('Markers and object boundaries superimposed on original image (I4)')
Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');
figure
imshow(Lrgb)
title('Colored watershed label matrix (Lrgb)')
figure
imshow(Ifil2)
hold on
himage = imshow(Lrgb);
himage.AlphaData = 0.3;
title('Lrgb superimposed transparently on original image')
x = double(fgm);
m = size(fgm,1);
n = size(fgm,2);
signal1 = fgm(:,:);
%Feat = getmswpfeat(signal,winsize,wininc,J,'matlab');
%Features = getmswpfeat(signal,winsize,wininc,J,'matlab');
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4');
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4');
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4');
DWT_feat = [cA3,cH3,cV3,cD3];
G = pca(DWT_feat);
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
%Skewness = skewness(img)
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
%%SVM TRAINING AND CLASSIFICATION
database = xlsread('datacan.xls');
% Read Database in excel file
disp('data base of patients ');
disp(database);
Contrast = database(1:10,1);
Correlation = database(1:10,2);
Energy = database(1:10,3);
Homogeneity = database(1:10,4);
Mean = database(1:10,5);
Standard_Deviation = database(1:10,6);
Entropy = database(1:10,7);
RMS = database(1:10,8);
Variance = database(1:10,9);
Smoothness = database(1:10,10);
Kurtosis = database(1:10,11);
Skewness = database(1:10,12);
IDM = database(1:10,13);
xdata = ([Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM]);
group = database(1:10,14);
svmStruct= svmtrain(xdata,group,'kernel_function','rbf','rbf_sigma',3,'ShowPlot',true);
% Classifying New input data
disease = svmclassify(svmStruct,[feat],'ShowPlot',true);
if (disease==1)
disp('Patient is having cancer');
h=msgbox('Patient is having cancer','RESULT','custom',I);
else
disp('Patient is not having cancer');
h=msgbox('Patient is not having cancer','RESULT','custom',I);
end
  9 Kommentare

Melden Sie sich an, um zu kommentieren.

Antworten (7)

KSSV
KSSV am 9 Apr. 2018
Bearbeitet: KSSV am 9 Apr. 2018
Your excel file has data of size 9*14.....you are trying to access data data(1:10,i). So this is the error. Either you replace 1:10 with : or 1:end, from lines 132 to 142.
The data of the patient has cancer..poor him.

Sagar V
Sagar V am 29 Jan. 2019
how train the datacan.xls file or .mat file please help me to perform for my dataset images
  2 Kommentare
Walter Roberson
Walter Roberson am 29 Jan. 2019
The code line
svmStruct= svmtrain(xdata,group,'kernel_function','rbf','rbf_sigma',3,'ShowPlot',true);
does the training.
Note that svmtrain() has been replaced in newer MATLAB releases.
Sagar V
Sagar V am 7 Feb. 2019
how to create datacan.xls file or .mat file of an 50 images at a time and storing to
a file

Melden Sie sich an, um zu kommentieren.


LAKSHIPRIYA GOGOI
LAKSHIPRIYA GOGOI am 11 Mai 2020
Bearbeitet: LAKSHIPRIYA GOGOI am 11 Mai 2020
Getting problem in this syntax
svmStruct= svmtrain(xdata,group,'kernel_function','rbf','rbf_sigma',3,'ShowPlot',true);
I am using Matlab2014a.. I will be pleased if I got the answer..
  5 Kommentare
Walter Roberson
Walter Roberson am 24 Jul. 2021
Agent: we need to know which MATLAB version you are using, and whether you have the Statistics toolbox, and if not whether you have installed the third party SVM toolbox

Melden Sie sich an, um zu kommentieren.


Vinithra P
Vinithra P am 5 Jul. 2021
May I know, which part is the detection in this?
  1 Kommentar
Walter Roberson
Walter Roberson am 5 Jul. 2021
All of it.
In particular, the part from
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4');
is creating features, through to
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
puts the completed feature vector together.
Then the part from
%%SVM TRAINING AND CLASSIFICATION
to
svmStruct= svmtrain(xdata,group,'kernel_function','rbf','rbf_sigma',3,'ShowPlot',true);
extracts features from a database and does svm training on it.
Then
disease = svmclassify(svmStruct,[feat],'ShowPlot',true);
processes the features extracted from the patient image through the trained SVM system, making a prediction about which group it belongs to.

Melden Sie sich an, um zu kommentieren.


khushboo singh
khushboo singh am 7 Nov. 2021
THIS SYNTAX IS NOT WORKING IN R2021b
svmStruct= svmtrain(xdata,group,'kernel_function','rbf','rbf_sigma',3,'ShowPlot',true);
  8 Kommentare
Walter Roberson
Walter Roberson am 8 Dez. 2021
svmStruct= fitcsvm(xdata,group,'KernelFunction',' KernelScale',3,'ShowPlot',true);
That line does not match your posted code. Your posted code says
svmStruct= fitcsvm(xdata,group,'KernelFunction','rbf',' KernelScale',3,'ShowPlot',true);
Notice that in the error message, there is no 'rbf' . Also, you introduced a space at the beginning of the KernelScale option.

Melden Sie sich an, um zu kommentieren.


Kunala Sahith
Kunala Sahith am 8 Dez. 2021
Bearbeitet: Walter Roberson am 8 Dez. 2021
I=imread('000114.png');
figure
imshow(I);
title('INPUT CT IMAGE');
Igra1=rgb2gray(I);
figure
imshow(Igra1);
title('GRAY IMAGE');
Ifil2=medfilt2(Igra1,[3,3]);
figure
imshow(Ifil2);
title('FILTERED GRAY IMAGE');
text(732,501,'Image courtesy of Corel(R)',...
'FontSize',7,'HorizontalAlignment','right')
hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(Ifil2), hy, 'replicate');
Ix = imfilter(double(Ifil2), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);
figure
imshow(gradmag,[]), title('Gradient magnitude (gradmag)')
L = watershed(gradmag);
Lrgb = label2rgb(L);
figure, imshow(Lrgb), title('Watershed transform of gradient magnitude (Lrgb)')
se = strel('disk', 20);
Io = imopen(Ifil2, se);
figure
imshow(Io), title('Opening (Io)')
Ie = imerode(Ifil2, se);
Iobr = imreconstruct(Ie, Ifil2);
figure
imshow(Iobr), title('Opening-by-reconstruction (Iobr)')
Ioc = imclose(Io, se);
figure
imshow(Ioc), title('Opening-closing (Ioc)')
Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);
figure
imshow(Iobrcbr), title('Opening-closing by reconstruction (Iobrcbr)')
fgm = imregionalmax(Iobrcbr);
figure
imshow(fgm), title('Regional maxima of opening-closing by reconstruction (fgm)')
I21 = Ifil2;
Ifil2(fgm) = 255;
figure
imshow(I21), title('Regional maxima superimposed on original image (I21)')
se2 = strel(ones(5,5));
fgm2 = imclose(fgm, se2);
fgm3 = imerode(fgm2, se2);
fgm4 = bwareaopen(fgm3, 20);
I3 = Ifil2;
I3(fgm4) = 255;
figure
imshow(I3)
title('Modified regional maxima superimposed on original image (fgm4)')
bw = imbinarize(Iobrcbr);
figure
imshow(bw), title('Thresholded opening-closing by reconstruction (bw)')
D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;
figure
imshow(bgm), title('Watershed ridge lines (bgm)')
gradmag2 = imimposemin(gradmag, bgm | fgm4);
L = watershed(gradmag2);
I4 = Ifil2;
I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;
figure
imshow(I4)
title('Markers and object boundaries superimposed on original image (I4)')
Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');
figure
imshow(Lrgb)
title('Colored watershed label matrix (Lrgb)')
figure
imshow(Ifil2)
hold on
himage = imshow(Lrgb);
himage.AlphaData = 0.3;
title('Lrgb superimposed transparently on original image')
x = double(fgm);
m = size(fgm,1);
n = size(fgm,2);
signal1 = fgm(:,:);
%Feat = getmswpfeat(signal,winsize,wininc,J,'matlab');
%Features = getmswpfeat(signal,winsize,wininc,J,'matlab');
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4');
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4');
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4');
DWT_feat = [cA3,cH3,cV3,cD3];
G = pca(DWT_feat);
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
%Skewness = skewness(img)
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
%%SVM TRAINING AND CLASSIFICATION
database = readmatrix('datacan.xls','UseExcel', false);
% Read Database in excel file
disp('data base of patients ');
disp(database);
Contrast = database(:,1);
Correlation = database(:,2);
Energy = database(:,3);
Homogeneity = database(:,4);
Mean = database(:,5);
Standard_Deviation = database(:,6);
Entropy = database(:,7);
RMS = database(:,8);
Variance = database(:,9);
Smoothness = database(:,10);
Kurtosis = database(:,11);
Skewness = database(:,12);
IDM = database(:,13);
xdata = ([Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM]);
group = database(:,14);
svmStruct= fitcsvm(xdata,group,'KernelFunction','rbf','KernelScale',3,'ShowPlot',true);
% Classifying New input data
disease = ClassificationSVM(svmStruct,(feat),'ShowPlot',true);
if (disease==1)
disp('Patient is having cancer');
h=msgbox('Patient is having cancer','RESULT','custom',I);
else
disp('Patient is not having cancer');
h=msgbox('Patient is not having cancer','RESULT','custom',I);
end
  4 Kommentare
Kunala Sahith
Kunala Sahith am 8 Dez. 2021
Finally IT WORKED SIR BY USING OLD VERSION OF MATLAB
but
showplot still doesnt work
Warning: The display option can only plot 2D training data.
> In svmtrain (line 399)
In dipmain1 (line 141)
Warning: No figure was created during SVMTRAIN so the showplot argument will be set false.
> In svmclassify (line 122)
In dipmain1 (line 143)
im using smvtrain as it is matlab2016b version.
can you pls correct me
code:-
xdata = ([Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM]);
group = database(:,14);
svmStruct= svmtrain(xdata,group,'ShowPlot',true);
% Classifying New input data
disease = svmclassify(svmStruct,[feat],'ShowPlot',true);
Walter Roberson
Walter Roberson am 9 Dez. 2021
Bearbeitet: Walter Roberson am 9 Dez. 2021
Shrug. ShowPlot is restricted to plotting data that has two columns. You cannot use it for your data.
ShowPlot is intended to show the line of division between the two classes. That only works if you only have two input dimensions, not 13.

Melden Sie sich an, um zu kommentieren.


Ahmed Alsheikhy
Ahmed Alsheikhy am 23 Dez. 2021
Could you send the Execl file to test it.

Kategorien

Mehr zu Biotech and Pharmaceutical finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by