Is there an easy way to make numerical simulations of the ODE of the form dx1/dt=x1(2-x1-x2), dx2/dt=x2(3-x1-x2-x3) for any xn?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Editor
am 5 Apr. 2018
Kommentiert: Editor
am 6 Apr. 2018
I have tried doing for 'n=5' and here is my code;
dx = @(t,x) [x(1);
x(1)*(2-x(1)-x(2));
x(2); x(2)*(3-x(1)-x(2)-x(3));
x(3); x(3)*(3-x(2)-x(3)-x(4));
x(4); x(4)*(3-x(3)-x(4)-x(5));
x(5); x(5)*(2-x(4)-x(5))];
tspan=[0 15];
x0=[0 2 0 3 0 4 0 6 0 8];
[t,x] = ode45(@(t,x) dx(t,x), tspan, x0);
figure(1)
plot(t, x)
Can someone please check if this code is correct, if not, how can I improve if and for any 'n'?. Thanks in advance.
0 Kommentare
Akzeptierte Antwort
Abraham Boayue
am 5 Apr. 2018
See code comments for answers.
clear variables
close all;
% dx must have 5 terms for n = 5
% the number terms in system equations
% must be the same as the number of
% elements in your dx vector.
% Remember your dot before *
dx = @(t,x) [x(1);x(1).*(2-x(1)-x(2));
x(2).*(3-x(1)-x(2)-x(3));
x(3).*(3-x(2)-x(3)-x(4));
x(4).*(3-x(3)-x(4)-x(5))];
tspan=[0 15];
x0=[0 2 0 3 0]; % same for the initial vector.
[t,x] = ode45(dx, tspan, x0);
figure(1)
plot(t, x);
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!