Finding probability distributions associated with a cross-validated svm using bayesopt
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I am finding difficulty in computing the probability of the predictions after training a Support Vector Machine with kfold cross validation and optimizing the hyperparameters using Bayesian optimization.
This is the code I am using
data = [S' U']'; size1 = size(S,1); size2 = size(U,1); theclass = ones((size1+size2),1); theclass(size1+1:end) = -1;
%% Preparing Cross Validation
c = cvpartition((size1+size2),'KFold',100);
%% Optimizing the SVM Classifier
opts = struct('Optimizer','bayesopt','ShowPlots',true,'CVPartition',c,... 'AcquisitionFunctionName','expected-improvement-plus');
svm = fitcsvm(data,theclass,'KernelFunction','rbf',... 'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',opts)
Any help is appreciated
0 Kommentare
Antworten (1)
Don Mathis
am 5 Apr. 2018
Bearbeitet: Don Mathis
am 5 Apr. 2018
To get posterior probabilities on a test set using a trained SVM, you can consult this Documentation page:
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!