solve 12 equations with 12 unknown ERROR: FSOLVE requires all values returned by functions to be of data type double.

4 Ansichten (letzte 30 Tage)
Given the following equations in the script
function F = root12d(x)
F(1) = x(1)-x(3) == 0;
F(2) = -x(5)+x(6) == 0;
F(3) = x(7)+x(9)-4 == 0;
F(4) = x(11)+x(12)-4 == 0;
F(5) = sqrt((x(1)-x(4))^2+(x(2)-x(5))^2+(x(3)-x(6))^2)-2 == 0;
F(6) = sqrt((x(4)-x(7))^2+(x(5)-x(8))^2+(x(5)-x(9))^2)-2 == 0;
F(7) = sqrt((x(7)-x(10))^2+(x(8)-x(11))^2+(x(9)-x(12))^2)-2 == 0;
F(8) = sqrt((x(10)-x(1))^2+(x(11)-x(2))^2+(x(12)-x(3))^2)-2 == 0;
F(9)= ( (x(4)-x(1))*(x(10)-x(1))+(x(5)-x(2))*(x(11)-x(2))+(x(6)-x(3))*(x(12)-x(3)) ) / ((sqrt((x(4))-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2)*sqrt((x(10)-x(1))^2+(x(10)-x(2))^2+(x(12)-x(3))^2)) -cosd(90) == 0;
F(10)= ( (x(1)-x(4))*(x(7)-x(4))+(x(2)-x(5))*(x(8)-x(5))+(x(3)-x(6))*(x(9)-x(6)) ) / ((sqrt((x(1))-x(4))^2+(x(2)-x(5))^2+(x(3)-x(6))^2)*sqrt((x(7)-x(4))^2+(x(8)-x(5))^2+(x(9)-x(6))^2)) -cosd(90) == 0;
F(11)= ( (x(4)-x(7))*(x(12)-x(7))+(x(5)-x(8))*(x(11)-x(8))+(x(6)-x(9))*(x(12)-x(9)) ) / ((sqrt((x(4))-x(7))^2+(x(5)-x(8))^2+(x(6)-x(9))^2)*sqrt((x(10)-x(7))^2+(x(11)-x(8))^2+(x(12)-x(9))^2)) -cosd(90) == 0;
F(12)= ( (x(7)-x(10))*(x(1)-x(10))+(x(8)-x(11))*(x(2)-x(11))+(x(9)-x(12))*(x(3)-x(12)) ) / ((sqrt((x(7))-x(10))^2+(x(8)-x(11))^2+(x(9)-x(12))^2)*sqrt((x(1)-x(10))^2+(x(2)-x(11))^2+(x(3)-x(12))^2)) -cosd(90) == 0;
when applying
fun = @root12d;
x0 = [0,0,0,0,0,0,0,0,0,0,0,0];
x = fsolve(fun,x0)
The error message as written in title occur. How can i change the values returned by the Functions into double?

Akzeptierte Antwort

Torsten
Torsten am 26 Mär. 2018
Remove all the "== 0" strings.
Best wishes
Torsten.
  2 Kommentare
Manuel Fuelling
Manuel Fuelling am 26 Mär. 2018
Then a new error message occurs:
Error using trustnleqn (line 28) Objective function is returning undefined values at initial point. FSOLVE cannot continue.
Error in fsolve (line 388) trustnleqn(funfcn,x,verbosity,gradflag,options,defaultopt,f,JAC,...
Torsten
Torsten am 26 Mär. 2018
Choosing x0=0 leads to a division-by-zero in the calculation of F(9),F(10),F(11) and F(12).
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Historical Contests finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by