How can I use a model exported from classification learner to make a prediction?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
So I've trained a model and exported it to my workspace however i get an error when i try to use it to make a prediction. I've tried two forms, one as instructed by matlab, and the 2nd according to this answer
first attempt: my code is
m1.predictFcn(featureVec)
and i get an error
Error using array2table (line 62)
The VariableNames property must contain one name for each variable in the table.
Error in mlearnapp.internal.model.DatasetSpecification>@(x)array2table(x','VariableNames',this.PredictorNames)
Error in mlearnapp.internal.model.DatasetSpecification>@(x)exportableClassifier.predictFcn(predictorExtractionFcn(x)) (line 138)
newExportableClassifier.predictFcn = @(x) exportableClassifier.predictFcn(predictorExtractionFcn(x));
2nd attempt
VarNames = arrayfun(@(N) sprintf('VarName%d',N), 1:4, 'Uniform', 0);
FV_table = array2table( featureVector, 'VariableNames', {'a','b','c','d'});
yfit = m1.predictFcn(featureVector)
and this time the error is
Error using array2table (line 62)
The VariableNames property must contain one name for each variable in the table.
Error in mlearnapp.internal.model.DatasetSpecification>@(x)array2table(x','VariableNames',this.PredictorNames)
Error in mlearnapp.internal.model.DatasetSpecification>@(x)exportableClassifier.predictFcn(predictorExtractionFcn(x)) (line 138)
newExportableClassifier.predictFcn = @(x) exportableClassifier.predictFcn(predictorExtractionFcn(x));
Antworten (1)
Billy Ram
am 15 Mär. 2022
I might be very late in answering this question. I had the same problem and was looking for answers. Make sure that you don't have the supervised class column in your test data.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classification Trees finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!