I am unable to obtain multiple graphs by varying a parameter in a for loop while solving a Runge-Kutta based problem

1 Ansicht (letzte 30 Tage)
While solving a Runge-Kutta problem, I wanted to obtain 3 graphs varying the values of 'phi' in a 'for' loop, but I am unable to obtain it. Please, can someone correct it?
clear;clf;clc;
%parameters
s=0.01;
t_final=10;
global Re Pr R phi b eps Mn Bi alp rhof cpf kf rhos cps ks h_t
Re= 2.5;
Pr= 6.8;
R= 1;
pp=[0 0.05 0.1];
b=1.0;
eps=0.1;
Mn= 1.0;
Bi= 1.0;
alp= 1;
rhof= 997.1;
cpf= 4179.0;
kf= 0.613;
rhos= 8933.0;
cps= 385.0;
ks= 400;
h_t=2;
phi1= (1-phi)^2.5*((1-phi)+phi*(rhos/rhof));
phi2= (1-phi)+phi*((rhos*cps)/(rhof*cpf));
k = (ks+2*kf-2*phi*(kf-ks))/(ks+2*kf+phi*(kf-ks));
%initial conditions
t(1)=0;
h0(1)=1;
%function handle
f=@(t,h0) -(1+b)*h0+eps*((1+b^2)*phi1*Re+(1+b)*((1-phi)^2.5)*Mn^2)*h0^3/3+...
2*eps*alp*(1-phi)^2.5*(k/(k+Bi*h0))*h0^2-(2/3)*eps^2*(1-phi)^2.5*alp*Pr*(Re*phi2/k+R)*...
((2*k*Bi^2*h0^3*h_t)/(k+Bi*h0)^3+(2*(1+b)*Bi*k*h0^3)/(k+Bi*h0)^3+((1+b)*(3*k+Bi*h0)*k*h0^2)/(k+Bi*h0)^2)*h0^2/2;
% RK4 loop
for i=1:numel(pp);
phi=pp(i);
for i=1:ceil(t_final/s);
t(i+1)=t(i)+s;
k1= f(t(i) , h0(i));
k2= f(t(i)+0.5*s , h0(i)+0.5*k1*s);
k3= f(t(i)+0.5*s , h0(i)+0.5*k2*s);
k4= f(t(i)+s , h0(i)+k3*s);
h0(i+1)= h0(i)+s/6*(k1+2*k2+2*k3+k4);
fprintf('\n%16.3f%16.3f',t,h0);
plot(t,h0);hold on
end
end

Akzeptierte Antwort

Torsten
Torsten am 21 Mär. 2018
clear;clf;clc;
%parameters
s=0.01;
t_final=10;
global Re Pr R phi b eps Mn Bi alp rhof cpf kf rhos cps ks h_t
Re= 2.5;
Pr= 6.8;
R= 1;
pp=[0 0.05 0.1];
b=1.0;
eps=0.1;
Mn= 1.0;
Bi= 1.0;
alp= 1;
rhof= 997.1;
cpf= 4179.0;
kf= 0.613;
rhos= 8933.0;
cps= 385.0;
ks= 400;
h_t=2;
for j=1:numel(pp)
phi=pp(j);
phi1= (1-phi)^2.5*((1-phi)+phi*(rhos/rhof));
phi2= (1-phi)+phi*((rhos*cps)/(rhof*cpf));
k = (ks+2*kf-2*phi*(kf-ks))/(ks+2*kf+phi*(kf-ks));
%initial conditions
t(1)=0;
h(j,1)=1;
%function handle
f=@(t,y) -(1+b)*y+eps*((1+b^2)*phi1*Re+(1+b)*((1-phi)^2.5)*Mn^2)*y^3/3+...
2*eps*alp*(1-phi)^2.5*(k/(k+Bi*y))*y^2-(2/3)*eps^2*(1-phi)^2.5*alp*Pr*(Re*phi2/k+R)*...
((2*k*Bi^2*y^3*h_t)/(k+Bi*y)^3+(2*(1+b)*Bi*k*y^3)/(k+Bi*y)^3+((1+b)*(3*k+Bi*y)*k*y^2)/(k+Bi*y)^2)*y^2/2;
% RK4 loop
for i=1:ceil(t_final/s);
t(i+1)=t(i)+s;
k1= f(t(i) , h(j,i));
k2= f(t(i)+0.5*s , h(j,i)+0.5*k1*s);
k3= f(t(i)+0.5*s , h(j,i)+0.5*k2*s);
k4= f(t(i)+s , h(j,i)+k3*s);
h(j,i+1)= h(j,i)+s/6*(k1+2*k2+2*k3+k4);
end
end
plot(t,h(1,:),t,h(2,:),t,h(3,:))
And you should preallocate t and h before entering the first for-loop.
Best wishes
Torsten.
  5 Kommentare
naygarp
naygarp am 22 Mär. 2018
will I have to add the function handle 'f=@(t,h)' after in the 2nd for loop
for i=1:ceil(t_final/s);
t(i+1)=t(i)+s;
k1= f(t(i) , h(j,i));
k2= f(t(i)+0.5*s , h(j,i)+0.5*k1*s);
k3= f(t(i)+0.5*s , h(j,i)+0.5*k2*s);
k4= f(t(i)+s , h(j,i)+k3*s);
h(j,i+1)= h(j,i)+s/6*(k1+2*k2+2*k3+k4);
h_t=-(1-b)*h(j,i+1);
f=@(t,y) -(1+b)*y+eps*((1+b^2)*phi1*Re+(1+b)*((1-phi)^2.5)*Mn^2)*y^3/3+...
2*eps*alp*(1-phi)^2.5*(k/(k+Bi*y))*y^2-(2/3)*eps^2*(1-phi)^2.5*alp*Pr*(Re*phi2/k+R)*...
((2*k*Bi^2*y^3*h_t)/(k+Bi*y)^3+(2*(1+b)*Bi*k*y^3)/(k+Bi*y)^3+((1+b)*(3*k+Bi*y)*k*y^2)/(k+Bi*y)^2)*y^2/2;
end
Torsten
Torsten am 23 Mär. 2018
Bearbeitet: Torsten am 23 Mär. 2018
It's dirty hack, but I think this will do.
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by