how can i perform a Fourier series on this function?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mohammad Adeeb
am 17 Mär. 2018
Kommentiert: Mohammad Adeeb
am 20 Mär. 2018
clear all;
close all;
clc;
syms n t1 t2 T f0 t;%t2=T;
func=(f0/t2-t1)*(t-t1);
n=1:10;
syms t t1 T;%T=t2;
w = (2*pi)/T;
a0 = (2/T)*int(func,t,0,T);
an = (2/T)*int(func*cos(n*w*t),t,0, T);
bn = (2/T)*int(func*sin(n*w*t),t, 0,T);
f = a0/2 + dot(an,cos(n*w*t)) + dot (bn, sin(n*w*t));
ezplot(func);
hold on;
grid on;
plot(f);
0 Kommentare
Akzeptierte Antwort
Weitere Antworten (2)
Abraham Boayue
am 19 Mär. 2018
Hey Mahammed, instead of calculating the Fourier series like you did in matlab, why don't you calculate the coefficients by hand? What is the expression for f(x) and the values of f0 and t1?
1 Kommentar
Abraham Boayue
am 20 Mär. 2018
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/180228/image.png)
Mohammed, if you calculate the coefficients of the Fourier series of f(t), you will get a0 and an equal to zero. This is because f(t) is an odd function, only bn has value. The following code implements your equation.
clear variables
close all
N = 1000;
%%1. Generate and plot f(x)
T = 4;
t1 = 2;
t2 = T;
fo = 20;
t = -T:2*T/(N-1):T;
f = (fo/(t2-t1))*(t-t1);
figure
plot(t,f,'linewidth',1.5,'color','m')
grid;
a = title('f(x)');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('x (-4 4]');
xlim([-4 4]);
set(a,'Fontsize',14);
%%Define variable for F series
to = -16;
tf = 16;
t2 = to:(tf-to)/(N-1):tf;
F = zeros(1,N);
F1 = F;
F2 = F1;
% This is just a vectorized version of the for loop. It's a faster way
% of coding the F-series.
m = 1:N;
bn = (T^2./(pi*m)).*(-1).^(m+1);
F1000 = bn*sin((pi/T)*m'*t2); % 1000th Harmonic
% Gererate the F-series with a for loop, flexible.
% 5th Harmonic
for n = 1:5
an = 0;
bn = (T^2/(n*pi))*(-1)^(n+1);
w = (pi*n)/T;
F = F + bn*sin(w*t2);
end
% 15th Harmonic
for n = 1:15
an = 0;
bn = (T^2/(n*pi))*(-1)^(n+1);
w = (pi*n)/T;
F1 = F1 +bn*sin(w*t2);
end
% 25th Harmonic
for n = 1:25
bn = (T^2/(n*pi))*(-1)^(n+1);
w = (pi*n)/T;
F2 = F2 + bn*sin(w*t2);
end
figure
plot(t2,F,'linewidth',1.5,'color','r')
hold on
plot(t2,F1,'linewidth',1.9,'color','g')
plot(t2,F2,'linewidth',1.5,'color','m')
plot(t2,F1000,'linewidth',1.8,'color','b')
grid;
a = title('Fourier Series of f(x) 5th, 15th , 25th and 1000th Harmonics');
legend('F5','F15','F25','F1000');
set(a,'fontsize',14);
a = ylabel('y');
set(a,'Fontsize',14);
a = xlabel('t [-16 16]');
xlim([to tf]);
set(a,'Fontsize',14);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!