How can I evaluate this Fourier-transform?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to evaluate the Fourier-transform of a complex function. I have tried using fourier(_):
b=30;
c=1;
syms t;
A=exp(-t.^2/(2*c^2)+i*b*(exp(-t.^2/(2*c^2))).^2)
ft_A=fourier(A)
which just gives me the result:
A =
exp(exp(-t^2)*30i - t^2/2)
ft_A =
fourier(exp(exp(-t^2)*30i - t^2/2), t, w)
Instead, I think i need to go with integral(_) since i suspect that the Fourier transform does not have an analytic solution:
b=30;
c=1;
A=exp(-t.^2/(2*c^2)+i*b*(exp(-t.^2/(2*c^2))).^2)
fun=@(t,w) A.*exp(i*w*t)
q=integral(@(t)fun(t,w),-Inf,Inf)
This dosent work. The resulting error is:
Undefined function or variable 'w'.
Error in ft>@(t)fun(t,w)
Error in integralCalc/iterateScalarValued (line 314)
fx = FUN(t);
Error in integralCalc/vadapt (line 132)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen);
Error in integralCalc (line 103)
[q,errbnd] = vadapt(@minusInfToInfInvTransform,interval);
Error in integral (line 88)
Q = integralCalc(fun,a,b,opstruct);
Error in ft (line 5)
q=integral(@(t)fun(t,w),-Inf,Inf)
I guess I need to define w as a vector and then make a new vector where each entry is the integral "q" for a given entry of the w-vector, but how do I do that?
0 Kommentare
Antworten (2)
Torsten
am 12 Mär. 2018
b=30;
c=1;
fun=@(t,w)exp(-t.^2/(2*c^2)+1I*b*exp(-t.^2/c^2)).*exp(1I*w.*t);
q=@(w)integral(@(t)fun(t,w),-Inf,Inf,'ArrayValued',true);
q(1)
Best wishes
Torsten.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Error Functions finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!