How to solve this?

1 Ansicht (letzte 30 Tage)
James Marlom
James Marlom am 6 Mär. 2018
Bearbeitet: Abraham Boayue am 10 Apr. 2018
  1 Kommentar
James Tursa
James Tursa am 6 Mär. 2018
What have you done so far? What specific problems are you having with your code? Are you supposed to solve this with your own hand-written Euler and RK code, or can you use the MATLAB supplied functions such as ode45?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Abraham Boayue
Abraham Boayue am 8 Mär. 2018
Bearbeitet: Abraham Boayue am 10 Apr. 2018
function [t,x,y,N] = Runge4_2eqs(f1,f2,to,tfinal,xo,yo,h)
N = ceil((tfinal-to)/h);
x = zeros(1,N);
y = zeros(1,N) ;
x(1) = xo;
y(1) = yo;
t = to;
for i = 1:N
t(i+1) = t(i)+h;
Sx1 = f1(t(i),x(i),y(i));
Sy1 = f2(t(i),x(i),y(i));
Sx2 = f1(t(i)+h/2, x(i)+Sx1*h/2, y(i)+Sy1*h/2);
Sy2 = f2(t(i)+h/2, x(i)+Sx1*h/2, y(i)+Sy1*h/2);
Sx3 = f1(t(i)+h/2, x(i)+Sx2*h/2, y(i)+Sy2*h/2);
Sy3 = f2(t(i)+h/2, x(i)+Sx2*h/2, y(i)+Sy2*h/2);
Sx4 = f1(t(i)+h, x(i)+Sx3*h, y(i)+Sy3*h);
Sy4 = f2(t(i)+h, x(i)+Sx3*h, y(i)+Sy3*h);
x(i+1) = x(i) + (h/6)*(Sx1+2*Sx2+2*Sx3+Sx4);
y(i+1) = y(i) + (h/6)*(Sy1+2*Sy2+2*Sy3+Sy4);
end
function f1 = DvDX(t,x,y)
% Change t to V, x to X and y to T for your problem
% To = 1035;
% vo = 0.002;
% C_Ao = 1;
% k = 3.5*exp(34222*(1/To-1/T));
% F_Ao = C_Ao*vo;
% ra = k.*C_Ao*(1-To*X)./(1+X*T);
% f1 = ra/F_Ao;
% Test function
% a = 10;b = 1;
% f1= a*x-b*x*y;
f1 = y;
end
function f2 = DvDT(t,x,y)
% Change t to V, x to X and y to T for your problem
% To = 1035;
% T_a = 1150;
% vo = .002;
% U = 110;
% a1 = 150;
% C_Ao = 1;
% F_Ao = C_Ao*vo;
% deltaHR = 80770+6.8*(T-298)-5.75e-3*(T.^2-298^2)-1.27e-6*(T.^3-298^3);
%
% C_pA = 26.63 + 0.1830*T - (45.86e-6)*T.^2;
% C_pB = 20.04 + 0.0945*T - (30.95e-6)*T.^2;
% C_pC = 13.39 + 0.077*T - (1871e-6)*T.^2;
%
% deltaC_p = C_pB + C_pC - C_pA;
%
% k = 3.5*exp(34222*(1/To-1/T));
% ra = -k.*C_Ao*(1-To*X)/(1+X.*T);
% f2 = U*a1*(T_a-T)+ra.*deltaHR./(F_Ao*(C_pA+X.*deltaC_p));
% Test functions dydt
% l =.1; k =1;
% f2 = -l*y+k*x*y;
c = 0.16; m = 0.5; g = 9.81; L = 1.2;
f2 = -(c/m)*y - (g/L)*sin(x);
end
clear variables
colse all
xo = pi/2;
yo = 0;
h = .020;
to = 0;
tfinal = 20;
[t,x,y,N] = Runge4_2eqs(@DvDX,@DvDT,to,tfinal,xo,yo,h);
figure(1); clf(1)
plot(t,x, 'Linewidth', 1.5, 'color', 'r')
hold on
plot(t,y,'Linewidth', 1.5, 'color', 'b')
legend('Dfx','Dfy')
title('Solution to two systems of ODEs')
xlabel('x')
ylabel('y')
xlim([to tfinal])
grid
  3 Kommentare
James Marlom
James Marlom am 8 Mär. 2018
Thank you Abraham
Abraham Boayue
Abraham Boayue am 8 Mär. 2018
You are welcome.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by