Optimization: Need to to optimize qr

2 Ansichten (letzte 30 Tage)
Devdatt Thengdi
Devdatt Thengdi am 6 Mär. 2018
Beantwortet: Xavier am 13 Mär. 2018
I need to optimize qr wrt to do, L, Tg, nb, uo. Do I need to substitute all variables into the formula for qr or is there any other way to solve it?
%Fuel flowrate
Ti = 251.9 + 273.15; %Fluid in degK
T0 = 386.1 + 273.15; %Fluid/gas out degK
cpL = 0.32; %Cp fluid KJ/kgdegK
flowL = 500; %flowrate fluid kg/s
THD = flowL*cpL*(T0 - Ti);%Total Heat Duty
Ef = 0.9320; %Fuel efficiency
qfuel = THD/Ef;%Heat released by fuel Kw
LHV = 41.05; %Fuel value KJ/kg
mfuel = qfuel/LHV;
%absorptivity
hp = 6.626*(10^-34); %planck's constant m2kg/s
cl = 3*(10^8); %speed of light m2/s
lamda = hp*cl/Qfuel; %wavelength
Avog = 6.023*10^24; %Avogadro's number
x1 = 0.9;
M1 = 16;
x2 = 0.1;
M2 = 29;
fatmass = x1*M1 + x2*M2; %fuel molecular mass
nA = mfuel*Avog*fatmass; %number of atoms
pi = 22/7;
alpha = 4*pi*nA/lamda;
%Exchange factor
x = pi*d0/2; %ctc
F = (sqrt(x^2 - 4) - x + 2*sinh(2/x))/2*pi;
%Heat transfer coefficient
k = 0.25*10^-3; %Thermal conductivity
rof = 1320; %density
Gm = 920880; %mass flowrate
mu = 130; %Viscosity Pa-s
A0 = pi*d0*d0/4;
h0 = (d0/k)*(0.023*((Gm*d0/mu*A0)^0.8)*((cpL*mu/k))^0.3);
%Tube wall temperature
Tref = 41; %Ambient
Tw = Tref + (Ti - T0)/L;
%Air
ea = 0.15; %excess air
cpair = 0.171; %Kcal/kgdegK
Tairin = 114;
atfr = 1.344; %in notebook
mair = mfuel*atfr*(1+ea);
%Flame calculation
cpsteam = 4.1855;
cpco2 = 0.918;
cpn2 = 1.044;
xco2 = 0.054;
xsteam = 0.034; %Total should be 8.8
xn2 = 0.66;
cpgas = xsteam*cpsteam + xco2*cpco2 + xn2*cpn2;
kgas = 0.25; %Thermal conductivity
mgas = mfuel + mair;
Lf = 0.0042*(qfuel^0.478); %flame length
tf = sqrt(pi*uo*Lf*cpgas/mgas*kgas); %flame size
db = 1.5*tf; %Burner tile diameter
dbc = db/(sin(180/nb) + (pi/nb)); %Burner circle diameter
%Cold plane area
cbt = (qfuel*1.055/4*10^6) + 1.5;
dtc = cbt + dbc; %tube circle diameter
ntube = pi*dtc/x;
Ar = L*ntubes*x;
%Radiant heat flux
sig = 5.67*10^-8; %Stefan-Boltzmann constant
qr = sig*alpha*F*(Tg^4 - Tw^4) + h0*(Tg - Tw);
%Heat leaving
Qr = qr * Ar; %total radiant heat absorbed
qair = mair*cpair*(Tairin - Tref);
qloss = 0.05*qfuel;
qout = qfuel + qair - (Qr + qloss);
  4 Kommentare
Devdatt Thengdi
Devdatt Thengdi am 7 Mär. 2018
Anyway, I've made progress. I changed the target variable to qout. I am getting 'Not enough input arguments' as result. Any thoughts?
Function:
function qout = Lobo(d0, L, Tg, nb, uo)
clc
%Fuel flowrate
Ti = 251.9 + 273.15; %Fluid in degK
T0 = 386.1 + 273.15; %Fluid/gas out degK
cpL = 0.32; %Cp fluid KJ/kgdegK
flowL = 500; %flowrate fluid kg/s
THD = flowL.*cpL.*(T0 - Ti);%Total Heat Duty
Ef = 0.9320; %Fuel efficiency
qfuel = THD./Ef;%Heat released by fuel Kw
LHV = 41.05; %Fuel value KJ/kg
mfuel = qfuel./LHV;
%absorptivity
hp = 6.626*(10^-34); %planck's constant m2kg/s
cl = 3*(10^8); %speed of light m2/s
lamda = hp*cl/qfuel; %wavelength
Avog = 6.023*10^24; %Avogadro's number
x1 = 0.9;
M1 = 16;
x2 = 0.1;
M2 = 29;
fatmass = x1*M1 + x2*M2; %fuel molecular mass
nA = mfuel*Avog*fatmass; %number of atoms
pi = 22/7;
alpha = 4.*pi.*nA./lamda;
%Exchange factor
x = pi.*d0/2; %ctc
F = ((sqrt(x.^2 - 4) - x + 2.*sinh(2./x))/2.*pi);
%Heat transfer coefficient
k = 0.25*10^-3; %Thermal conductivity
%rof = 1320; %density
Gm = 920880; %mass flowrate
mu = 130; %Viscosity Pa-s
A0 = pi.*d0.*d0./4;
h0 = ((d0./k).*(0.023.*((Gm.*d0./mu.*A0).^0.8).*((cpL.*mu./k)).^0.3));
%Tube wall temperature
Tref = 41; %Ambient
Tw = Tref + (Ti - T0)/L;
%Air
ea = 0.15; %excess air
cpair = 0.171; %Kcal/kgdegK
Tairin = 114;
atfr = 1.344; %in notebook
mair = mfuel.*atfr.*(1+ea);
%Flame calculation
cpsteam = 4.1855;
cpco2 = 0.918;
cpn2 = 1.044;
xco2 = 0.054;
xsteam = 0.034; %Total should be 8.8
xn2 = 0.66;
cpgas = xsteam.*cpsteam + xco2.*cpco2 + xn2.*cpn2;
kgas = 0.25; %Thermal conductivity
mgas = mfuel + mair;
Lf = 0.0042.*(qfuel.^0.478); %flame length
tf = sqrt(pi.*uo.*Lf.*cpgas./mgas.*kgas); %flame size
db = 1.5.*tf; %Burner tile diameter
dbc = db./(sin(180./nb) + (pi./nb)); %Burner circle diameter
%Cold plane area
cbt = (qfuel.*1.055/4*10^6) + 1.5;
dtc = cbt + dbc; %tube circle diameter
ntubes = pi.*dtc./x;
Ar = L.*ntubes.*x;
%Radiant heat flux
stef = 5.67*10^-8; %Stefan-Boltzmann constant
qr = stef.*alpha.*F.*(Tg.^4 - Tw.^4) + ho.*(Tg - Tw);
%qr = stef*alpha*((sqrt((pi*d0)^2 - 16) - 2*x + 2*sinh(4/pi*d0))/4*pi)*(Tg^4 - (Tref + (Ti - T0)/L)^4) + ((d0/k)*(0.023*((Gm*d0/mu*pi*d0*d0/4)^0.8)*((cpL*mu/k))^0.3))*(Tg - (Tref + (Ti - T0)/L));
%Heat leaving
Qr = qr .* Ar; %total radiant heat absorbed
%Qr = qr * L*pi*(((qfuel*1.055/4*10^6) + 1.5) + ((1.5*(sqrt(pi*uo*Lf*cpgas/mgas*kgas)))/(sin(180/nb) + (pi/nb))));
qair = mair.*cpair.*(Tairin - Tref);
qloss = 0.05.*qfuel;
qout = qfuel + qair - ((stef.*alpha.*((sqrt((pi.*d0).^2 - 16) - 2.*x + 2*sinh(4/pi.*d0))/4*pi).*(Tg.^4 - (Tref + (Ti - T0)/L).^4) + ((d0/k).*(0.023.*((Gm.*d0/mu.*pi.*d0.*d0/4)^0.8).*((cpL.*mu./k)).^0.3)).*(Tg - (Tref + (Ti - T0)/L)).*L.*pi.*(((qfuel.*1.055/4*10^6) + 1.5) + ((1.5.*(sqrt(pi.*uo.*Lf.*cpgas./mgas.*kgas)))/(sin(180/nb) + (pi/nb))))) + qloss);
end
Solution:
%d0 = 0.01:1;
%L = 1:18;
%Tg = 1:1950;
%nb = 8:12;
%uo = 1:50;
x0 = [0.01, 1, 10, 8, 1];
options = optimset('PlotFcns',@optimplotfval);
X = fminsearch(@Lobo, x0, options);
qr = @Lobo;
plot (d0,qr)
xlabel('Tube circle diameter (d0)');
ylabel('flux (qr)');
Torsten
Torsten am 7 Mär. 2018
X = fminsearch(@(x)Lobo(x(1),x(2),x(3),x(4),x(5)), x0, options);
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Xavier
Xavier am 13 Mär. 2018
Devdatt
what are you input to the function?

Kategorien

Mehr zu Thermal Analysis finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by