How to find optimal k from k means clustering by using elbow method

93 Ansichten (letzte 30 Tage)
I want to find optimal k from k means clustering by using elbow method . I have 100 customers and each customer contain 8689 data sets. How can I create a program to cluster this data set into appropriate k groups.

Akzeptierte Antwort

kira
kira am 2 Mai 2019
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);

Weitere Antworten (1)

Saranya  A
Saranya A am 8 Mär. 2018
Bearbeitet: KSSV am 11 Feb. 2021
This function will help you to find the optimum number of clusters. https://in.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans-x-

Kategorien

Mehr zu Cluster Analysis and Anomaly Detection finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by