How to find optimal k from k means clustering by using elbow method
93 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Pradya Panyainkaew
am 8 Jan. 2018
Bearbeitet: KSSV
am 11 Feb. 2021
I want to find optimal k from k means clustering by using elbow method . I have 100 customers and each customer contain 8689 data sets. How can I create a program to cluster this data set into appropriate k groups.
0 Kommentare
Akzeptierte Antwort
kira
am 2 Mai 2019
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);
0 Kommentare
Weitere Antworten (1)
Saranya A
am 8 Mär. 2018
Bearbeitet: KSSV
am 11 Feb. 2021
This function will help you to find the optimum number of clusters. https://in.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans-x-
0 Kommentare
Siehe auch
Kategorien
Mehr zu Cluster Analysis and Anomaly Detection finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!