I need to replace a variable with it equivalent matrix in a function
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I need the function E to be only in term of the variable 'D'. So I need to replace the 'k' with a matrix the contains only 'D'
This is the value of E:
((17164578615225570660380539555542573*k^(1/2)*log(D + 1))/166153499473114484112975882535043072 + (262204404621380299*2^(1/2)*k^(1/2))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2))/184467440737095516160 + (22586880285468537*481^(1/2)*k^(1/2))/1365059061454506819584 + (7272608261210661*962^(1/2)*k^(1/2))/42658095670453338112 + (262204404621380299*1443^(1/2)*k^(1/2))/341264765363626704896 + (25999031012434971*2405^(1/2)*k^(1/2))/13650590614545068195840 + (17164578615225570660380539555542573*2886^(1/2)*k^(1/2))/12295358961010471824360215307593187328 + (11534338684353237*4810^(1/2)*k^(1/2))/213290478352266690560 + (2505730989032972149*7215^(1/2)*k^(1/2))/54602362458180272783360 + (8842625771650701*10101^(1/2)*k^(1/2))/5460236245818027278336 + (5410351780724089*14430^(1/2)*k^(1/2))/213290478352266690560 + (6527015628853679*50505^(1/2)*k^(1/2))/6825295307272534097920 + (17164578615225570660380539555542573*k^(1/2))/166153499473114484112975882535043072 - (16874112378505048631143767994485025185249706192634551440106553380308219659367599466850516971541902923029737*2^(1/2)*exp(-k/2))/51497252757440425112805277288666860818505571565988146549138088471163366136405808388884891558723190784000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*1443^(1/2)*exp(-k/2))/211541712150131259081863894753258598134227480340903307078693681812291920945836011290624000000 - (9491567714229462699209099163400904852480349883408824857456268577003257391100291886801201819*2^(1/2)*D*exp(-k/2))/62165404551223330269422781018352605012557018849668464680057997111644937126566671941632000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*1443^(1/2)*D*exp(-k/2))/255364614831250860135085966904249941740691031970304302541013396280573952000000 - (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*k*exp(-k/2))/1429335892906292291093674964549044581988023515816914237018200552785756222607000076288000000 + (1873106879296623377528201523369593876137260911885774871866432782906658256160455462683123361*2^(1/2)*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/5717343571625169164374699858196178327952094063267656948072802211143024890428000305152000000 + (262204404621380299*2^(1/2)*k^(1/2)*log(D + 1))/9223372036854775808 + (2424202753736887*3^(1/2)*k^(1/2)*log(D + 1))/576460752303423488 + (5410351780724089*5^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (7528960095156179*6^(1/2)*k^(1/2)*log(D + 1))/36893488147419103232 + (2505730989032972149*10^(1/2)*k^(1/2)*log(D + 1))/1475739525896764129280 + (8842625771650701*14^(1/2)*k^(1/2)*log(D + 1))/147573952589676412928 + (3844779561451079*15^(1/2)*k^(1/2)*log(D + 1))/2882303761517117440 + (8666343670811657*30^(1/2)*k^(1/2)*log(D + 1))/368934881474191032320 + (6527015628853679*70^(1/2)*k^(1/2)*log(D + 1))/184467440737095516160 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*log(D + 1)*exp(-k/2))/6901746346790563787434755862277025452451108972170386555162524223799296000000 - (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*k*exp(-k/2))/1725436586697640946858688965569256363112777243042596638790631055949824000000 + (509659993860129657973062634657967595021820251147601164616438626444162793929*2^(1/2)*D*exp(-k/2)*log((828390857088487*D)/2251799813685248 + 3675208770282009/2251799813685248))/6901746346790563787434755862277025452451108972170386555162524223799296000000)/k^(1/2)
given the matrix k in terms of D, how do I replace all the k values in 'E' with the matrix itself?
Thank you.
0 Kommentare
Antworten (2)
KSSV
am 28 Dez. 2017
First evaluate k which is in terms of D..and then substitute D and k in the expression for E.
Make a note of element be element operations. https://in.mathworks.com/help/fixedpoint/ref/times.html
0 Kommentare
Siehe auch
Kategorien
Mehr zu Discrete Data Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!