How to aggregate data on seasonal basis?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hydro
am 21 Dez. 2017
Kommentiert: Aries Dwi Siswanto
am 26 Apr. 2020
Hello, My seasons are defined as Dec-Feb, March-May, June-August, and Sep-Nov. My data is organized in Jan-December format with daily time step. the following code will re-arrange the data on a mean seasonal basis in the sequential order (e.g Q1= Jan - March, Q2=April - June), however, in North America season are different as I explained earlier. Can someone suggest a way forward or a code piece of code?
A=rand(730,2);
t1=(datetime(1981,1,1):datetime(1982,12,31))';
TT=timetable(t1,A);
TT2=retime(TT,'quarterly','mean');
Many thanks,
Ameer
0 Kommentare
Akzeptierte Antwort
Akira Agata
am 29 Jun. 2018
You can do that by setting new time vector as the 2nd input variable of retime function, like:
t2 = [datetime(1980,12,1):calmonths(3):datetime(1983,2,1)]';
TT2 = retime(TT,t2,'mean');
The result looks like:
>> TT2
TT2 =
9×1 timetable
t1 A
__________ __________________
1980/12/01 0.55223 0.4327
1981/03/01 0.46912 0.44696
1981/06/01 0.47352 0.46669
1981/09/01 0.51435 0.51787
1981/12/01 0.47761 0.52672
1982/03/01 0.51506 0.50781
1982/06/01 0.51125 0.58926
1982/09/01 0.491 0.52664
1982/12/01 0.84221 0.70557
3 Kommentare
Aries Dwi Siswanto
am 26 Apr. 2020
Hi Andrei Bobrov and Ugur Uresin,
t2 = [datetime(1980,12,1):calmonths(3):datetime(1983,2,1)]';
TT2 = retime(TT,t2,'mean');
Which part will added by 1?
Thank you,
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!