Discontinutiy of a function

3 Ansichten (letzte 30 Tage)
Sergio Manzetti
Sergio Manzetti am 6 Dez. 2017
Bearbeitet: Sergio Manzetti am 8 Dez. 2017
Hi, I have the following command:
if true
syms h g x C
h = 1
g = 4
C = 1/(2.*pi);
f = (C - (exp(-2.*g.*1i.*x./h)).*((g.*x)/2.*h.*1i));
disc = feval(symengine, 'discont', f, x);
However I get the result:
disc =
Empty sym: 1-by-0
Is there any way to get the discontinuity of this function in the real and imaginary plane?
  7 Kommentare
Torsten
Torsten am 8 Dez. 2017
Bearbeitet: Torsten am 8 Dez. 2017
I don't understand why "Mathematica" treats this function as a mapping from R to R.
Regarding it as a mapping from R to C or from C to C, it is continous (and even has much higher smoothness properties).
Best wishes
Torsten.
Sergio Manzetti
Sergio Manzetti am 8 Dez. 2017
Bearbeitet: Sergio Manzetti am 8 Dez. 2017
Thanks Torsten, so I can safely say that this function is continuous in R and C? You see, the integral of it and its hermitian counterpart in MATLAB gives single valued numbers only when using double precision, but when using regular precision I get a result composite of several functions. So I though that composite result was actually the integral over several fragments of the function across R, and thus not a continuous integral. (which one would expect if it was continuous in R)

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by