PCA Analysis for clustering

9 Ansichten (letzte 30 Tage)
arun
arun am 1 Mai 2012
Hello,
I have a dataset with 5 columns and 7500 rows. I need to find the minimum number of principal components needed to partition the data into the best number of clusters. I used the Princomp command to calculate the eigen values of the principal components but am not able to comprehend the # of principal components needed for the partition which parameter should I use?. Please kindly answer asap. Thanks.
Arun
  1 Kommentar
Geoff
Geoff am 1 Mai 2012
My understanding of principal components is that it shows you the most significant orthogonal axes within your data. To me, that means something different to clustering. My approach to clustering is to solve with k-means using several different values of k, and then devise a suitable metric (the hard part) to determine how well my data is clustered for each value of k. I then choose the clustering (and k) which best satisfies my metric. There are probably more scientific ways to go about it.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by