Differential equation system in Optimization Toolbox
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, everyone.
I'm trying to solve dynamic programming problem. I have differential equation system like that one:
dydt = zeros(2,1);
dydt(1) = z(1);
dydt(2) = z(2)-z(1);
With constraints:
z>=0;
z(1)+z(2)<=x(2);
z(2)<=x(1);
x(2)>=0;
I must maximize x(2) on period T=5.
How can I optimize DES and find z with Optimization Toolbox?
Thank you.
8 Kommentare
Antworten (1)
Richard Brown
am 1 Mai 2012
Your problem is a linear program in the arrays x1, x2, z1, z2. Because the RHS of the ODEs is piecewise constant, the problem can be reformulated as a series of difference equations. You therefore have the following linear equality constraints:
k = 0, ..., 4:
x1[k+1] = x1[k] + z1[k]
x2[k+1] = x2[k] + z2[k] - z1[k]
where x1[0] and x2[0] are known initial conditions
And you have the following linear inequality constraints:
k = 0, ..., 4:
z1[k] >= 0
z2[k] >= 0
z1[k] + z2[k] <= x2[k]
z2[k] <= x1[k]
z2[k] - z1[k] >= -x2[k]
Your cost is also linear:
c(z1, z2, x1, x2) = x2[5]
All of this defines a linear program that you can solve with linprog. All you require is a little bookkeeping to formulate the constraint matrices (and conversion to ones-based indexing)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Quadratic Programming and Cone Programming finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!