How to solve fick's 2nd law of diffusion equation?
32 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Nonlinear
am 21 Nov. 2017
Kommentiert: Nonlinear
am 24 Nov. 2017
Hello everybody,
I am trying to solve a PDE which has the form:
dC/dt = (1+c)^2/{(1+c)^2+1}d2C/dx2
Can Matlab solve such a equation like that? If it can, how can I set it up?
Thanks for any help.
0 Kommentare
Akzeptierte Antwort
Precise Simulation
am 22 Nov. 2017
Modeling and simulation of convection and diffusion is certainly possible to solve in Matlab with the FEA Toolbox, as shown in the model example below:
% Set up 1D domain from 0..1 with 20 elements.
fea.sdim = { 'x' };
fea.grid = linegrid( 20, 0, 1);
% Add covection and diffusion physics mode.
fea = addphys( fea, @convectiondiffusion, {'C'} );
% Define diffusion coefficient.
fea.phys.cd.eqn.coef{2,end} = {'d_coef'};
fea.expr = { 'c', {'1.23'} ;
'd_coef', {'(1+c)^2/((1+c)^2+1)'} };
% Use c = -1 on right boundary, and insulation
% flux boundary conditions on the left.
fea.phys.cd.bdr.sel = [ 1 3 ];
fea.phys.cd.bdr.coef{1,end}{1} = -1;
% Check, parse, and solve problem
% with initial condition 'C=2*x'.
fea = parsephys( fea );
fea = parseprob( fea );
[fea.sol.u,tlist] = ...
solvetime( fea, 'dt', 0.1, 'tmax', 1, 'init', {'2*x'} );
% Alternatively, solvestat can be used for stationary problems.
% Postprocessing.
isol = length(tlist);
postplot( fea, 'surfexpr', 'C', 'solnum', isol )
title( ['Solution at time, t = ',num2str(tlist(isol))] )
ylabel( 'Concentration, C' )
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Boundary Conditions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!