sine wave plot

1.246 Ansichten (letzte 30 Tage)
aaa
aaa am 24 Apr. 2012
Beantwortet: Steven Lord am 23 Sep. 2025 um 13:45
Hi,
I am having some trouble plotting a sine wave and i'm not sure where i am going wrong.
i have
t = [0:0.1:2*pi]
a = sin(t);
plot(t,a)
this works by itself, but i want to be able to change the frequency. When i run the same code but make the change
a = sin(2*pi*60*t)
the code returns something bad. What am i doing wrong? How can i generate a sin wave with different frequencies?
  6 Kommentare
Walter Roberson
Walter Roberson am 10 Aug. 2021
In order to solve that, you need some hardware to do analog to digital conversion between your 3V source and MATLAB.
3V is too large for audio work, so you are not going to be able to use microphone inputs to do this. You are going to need hardware such as a National Instruments ADC or at least an arduino (you might need to put in a resistor to lower the voltage range.)
The software programming needed on the MATLAB end depends a lot on which analog to digital convertor you use.
The appropriate analog to digital convertor to use is going to depend in part on what sampling frequency you need to use; you did not define that, so we cannot make any hardware recommendations yet.
Gokul Krishna N
Gokul Krishna N am 13 Okt. 2021
Just been reading the comments in this question. Hats off to you, sir @Walter Roberson

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Rick Rosson
Rick Rosson am 24 Apr. 2012
Please try:
%%Time specifications:
Fs = 8000; % samples per second
dt = 1/Fs; % seconds per sample
StopTime = 0.25; % seconds
t = (0:dt:StopTime-dt)'; % seconds
%%Sine wave:
Fc = 60; % hertz
x = cos(2*pi*Fc*t);
% Plot the signal versus time:
figure;
plot(t,x);
xlabel('time (in seconds)');
title('Signal versus Time');
zoom xon;
HTH.
Rick
  3 Kommentare
Nauman Hafeez
Nauman Hafeez am 28 Dez. 2018
How to calculate Fs for a particular frequency signal?
I am generating a stimulating signal using matlab for my impedance meter and it gives me different results on different Fs.
alex
alex am 23 Sep. 2025 um 10:38
class you are mate, bang on

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (8)

Mike Mki
Mike Mki am 29 Nov. 2016
Dear Mr. Rick, Is it possible to create knit structure in Matlab as follows:

Junyoung Ahn
Junyoung Ahn am 16 Jun. 2020
clear;
clc;
close;
f=60; %frequency [Hz]
t=(0:1/(f*100):1);
a=1; %amplitude [V]
phi=0; %phase
y=a*sin(2*pi*f*t+phi);
plot(t,y)
xlabel('time(s)')
ylabel('amplitude(V)')
  2 Kommentare
DARSHAN
DARSHAN am 8 Jan. 2023
why should we multiply f with 100?
Walter Roberson
Walter Roberson am 8 Jan. 2023
I think the intent was to give 100 samples per cycle.

Melden Sie sich an, um zu kommentieren.


Robert
Robert am 28 Nov. 2017
aaa,
What goes wrong: by multiplying time vector t by 2*pi*60 your discrete step size becomes 0.1*2*pi*60=37.6991. But you need at least two samples per cycle (2*pi) to depict your sine wave. Otherwise you'll get an alias frequency, and in you special case the alias frequency is infinity as you produce a whole multiple of 2*pi as step size, thus your plot never gets its arse off (roundabout) zero.
Using Rick's code you'll be granted enough samples per period.
Best regs
Robert

shampa das
shampa das am 26 Dez. 2020
Bearbeitet: Walter Roberson am 31 Jan. 2021
clc; t=0:0.01:1; f=1; x=sin(2*pi*f*t); figure(1); plot(t,x);
fs1=2*f; n=-1:0.1:1; y1=sin(2*pi*n*f/fs1); figure(2); stem(n,y1);
fs2=1.2*f; n=-1:0.1:1; y2=sin(2*pi*n*f/fs2); figure(3); stem(n,y2);
fs3=3*f; n=-1:0.1:1; y3=sin(2*pi*n*f/fs3); figure(4); stem(n,y3); figure (5);
subplot(2,2,1); plot(t,x); subplot(2,2,2); plot(n,y1); subplot(2,2,3); plot(n,y2); subplot(2,2,4); plot(n,y3);

soumyendu banerjee
soumyendu banerjee am 1 Nov. 2019
%% if Fs= the frequency u want,
x = -pi:0.01:pi;
y=sin(Fs.*x);
plot(y)

sevde busra bayrak
sevde busra bayrak am 24 Aug. 2020
sampling_rate = 250;
time = 0:1/sampling_rate:2;
freq = 2;
%general formula : Amplitude*sin(2*pi*freq*time)
figure(1),clf
signal = sin(2*pi*time*freq);
plot(time,signal)
xlabel('time')
title('Sine Wave')

Ranjita
Ranjita am 30 Sep. 2024
clc
clear all
fs = 10000;
T=1/fs
T = 1.0000e-04
f1 = 100;
f2= 50;
L= 10000;
t = (0:L-1)*T;
x1 =sin(2*pi*f1*t)+4*cos(2*pi*f2*t)
x1 = 1×10000
4.0000 4.0608 4.1174 4.1696 4.2171 4.2598 4.2973 4.3294 4.3561 4.3770 4.3920 4.4009 4.4037 4.4000 4.3898 4.3730 4.3496 4.3193 4.2821 4.2381 4.1871 4.1292 4.0643 3.9926 3.9139 3.8284 3.7362 3.6374 3.5320 3.4202
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
figure
subplot(2,2,1)
plot(t,x1)
axis([0 0.1 -1 6]);
title('SS Function');
xlabel('time');
ylabel('magnitude');
%frequency domain conversion and plotting
Y_x1=fftshift(fft(x1));
subplot(2,1,2)
plot (-(fs/2-fs/L)-1:(fs/L):(fs/2-fs/L),abs(Y_x1))
axis([-700 700 0 max(abs(Y_x1))+10000]);
title('Magnitude spectrum of S1 Function');
xlabel('Frequency(Hz)');
ylabel('magnitude');
sgtitle('Frequency Domain Representation of S1 Function');

Steven Lord
Steven Lord am 23 Sep. 2025 um 13:45
If you're using release R2018b or later, rather than computing sin(pi*something), I recommend using the sinpi function (and there is a corresponding cospi function.)
x = 0:0.25:2
x = 1×9
0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
s1 = sin(x*pi)
s1 = 1×9
0 0.7071 1.0000 0.7071 0.0000 -0.7071 -1.0000 -0.7071 -0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
s2 = sinpi(x)
s2 = 1×9
0 0.7071 1.0000 0.7071 0 -0.7071 -1.0000 -0.7071 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Note that elements 5 and 9 of s1 and s2 are visually different. In s1 they are very close to, but not exactly equal to, 0. In s2 since we're taking the sine of exact multiples of pi (x(5) is exactly 1 and x(9) is exactly 2) we get actual 0 values.
format longg
[s1([5 9]); s2([5 9])]
ans = 2×2
1.0e+00 * 1.22464679914735e-16 -2.44929359829471e-16 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
And in this particular example from the original question:
t = [0:0.1:2*pi];
inner = 2*60*t
inner = 1×63
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336 348
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
When we compare their values with the rounded version of those values using a very tight tolerance, we see that the values of inner are all very, very close to integer values. [isapprox was introduced in release R2024b.]
all(isapprox(inner, round(inner), 'verytight'))
ans = logical
1
That means that if we use sinpi all the values should be very close to 0.
a = sinpi(inner)
a = 1×63
1.0e+00 * 0 0 0 2.23223583872552e-14 0 0 4.46447167745105e-14 4.46447167745105e-14 0 0 0 0 8.9289433549021e-14 0 8.9289433549021e-14 0 0 8.9289433549021e-14 0 8.9289433549021e-14 0 0 0 1.78578867098042e-13 1.78578867098042e-13 0 0 0 1.78578867098042e-13 1.78578867098042e-13
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
maximumDifferenceFromZero = max(a, [], ComparisonMethod="abs")
maximumDifferenceFromZero =
3.57157734196084e-13
I'd say that's effectively 0 for most purposes.

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by