Simplify matrix to have ones in diagonal

1 Ansicht (letzte 30 Tage)
amateurintraining
amateurintraining am 30 Okt. 2017
Bearbeitet: David Goodmanson am 30 Okt. 2017
I have a function:
function [A_new, b_new] = forward_elimination(A, b)
%FORWARD_ELIMINATION - Performs forward elimination to put A into unit
% upper triangular form.
% A - original matrix of Ax = b
% b - original vector of Ax = b
% A_new - unit upper triangular A formed using Gaussian Elimination
% b_new - the vector b associated with the transformed A
A_new = A;
b_new = b;
[n,n]=size(A);
if any(diag(A)==0)
error('cannot compute')
end
for row=1:n-1
for i=row+1:n
factor=A(i,row)/A(row,row);
for j=row:n
A(i,j)=A(i,j)-factor*A(row,j);
end
b(i)=b(i)-factor*b(row);
end
A_new=A;
b_new=b;
end
end
This function provides the correct answer, however, I want the diagonals to be one. For example, when inputting a matrix A=[1 2 3; 4 5 6; 7 8 8] and b=[1;2;3], so: [A_new,b_new]=forward_elimination(A,b)
I want to produce a simplified matrix.
In this example, A_new=[1 2 3; 0 1 2; 0 0 1] b_new=[1;2/3;0]
However, my current code produces A_new=[1 2 3; 0 -3 -6; 0 0 -1] and b_new=[1;-2;0]
How do I simplify the function even more?

Antworten (1)

David Goodmanson
David Goodmanson am 30 Okt. 2017
Bearbeitet: David Goodmanson am 30 Okt. 2017
Hi amintr,
You can use
d = diag(A);
A_new = A./d; % newer versions of Matlab with implicit expansion
b_new = d.*b;
% without implicit expansion:
n = size(A,1);
A_new = A./repmat(d,1,n);

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by