I want a whole code for solving the Blasius equation(similarity variable 'eta') using shooting method with Runge Kutta 4th order numerical technique

9 Ansichten (letzte 30 Tage)
I tried to write a brief code for the Blasius equation but I am unable to proceed further, it will be helpful if improvements are done in the code that I have written
% f'''+1/2*f*f''=0
% converting to 3 1st order odes
% f'=G
% G'=H= f''
% H'= -1/2*f*H = f'''
clc;
close all;
h=0.01; % step size
F1=@(eta,f,G,H) G;
F2=@(eta,f,G,H) H;
F3=@(eta,f,G,H) -1/2*f*H;
%initial conditions
eta(1)=0;
f(1)=0;
G(1)=0;
%initial guess
H(1)= 0.332;
N=10/h; % eta ranges from 0 to 10
for i=1:N
eta(i+1)= eta(i)+h;
k1= F1(f(i), G(i), H(i), eta(i));
l1= F2(f(i), G(i), H(i), eta(i));
m1= F3(f(i), G(i), H(i), eta(i));
k2= F1(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
l2= F2(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
m2= F3(f(i)+1/2*h*k1, G(i)+1/2*h*l1, H(i)+1/2*h*m1, eta(i)+h/2);
k3= F1(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
l3= F2(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
m3= F3(f(i)+1/2*h*k2, G(i)+1/2*h*l2, H(i)+1/2*h*m2, eta(i)+h/2);
k4= F1(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
l4= F2(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
m4= F3(f(i)+h*k3, G(i)+h*l3, H(i)+h*m3, eta(i)+h);
f(i+1)= f(i)+ h/6*(k1+2*(k2+k3)+k4);
G(i+1)= G(i)+ h/6*(l1+2*(l2+l3)+l4);
H(i+1)= H(i)+ h/6*(m1+2*(m2+m3)+m4);
end
plot(eta,f,'r')
hold on
plot(eta,G,'b')
hold on
plot(eta,H,'g')
  3 Kommentare
Nainaru Tarakaramu
Nainaru Tarakaramu am 19 Jun. 2018
i want code for three dimensional graph plotting using shooting technique with Runge-kutta method

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Sijie Huang
Sijie Huang am 7 Mai 2018
please refer to the following thread Blaisus Equation Solution

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by