How could I translate this Python code to Matlab?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Gaëtan Poirier
am 26 Okt. 2017
Kommentiert: Audumbar Dhage
am 29 Apr. 2019
I have this python code that I would like to convert to Matlab code. Could anyone help me understand what is going on and help convert from one language to the other?
The code is as follows:
import random
N = 15
L = 10
sigma = 0.075
n_runs = 800
for runs in range(n_runs):
y = [random.uniform(0.0, L - 2 * N * sigma) for k in range(N)]
y.sort()
print [y[i] + (2 * i + 1) * sigma for 1 in range (N)]|
Much thanks to anyone who can assist me.
Update: I updated the code, if anyone can help, that would be great.
2 Kommentare
Akzeptierte Antwort
Andrei Bobrov
am 26 Okt. 2017
Bearbeitet: Andrei Bobrov
am 26 Okt. 2017
N = 15;
L = 10;
sigma = 0.075;
n_configs = 100;
rejections = 0 ;
x = zeros(N,n_configs);
for config = 1:n_configs
while 1
x(:,config) = sort((L-2*sigma)*rand(N,1));
if min(diff(x(:,config))) > 2*sigma
break
end
end
end
or
LL = linspace(0,L,N+1)';
x = (L/N - 2*sigma)*rand(N,n_configs) + LL(1:end-1) + sigma;
2 Kommentare
Weitere Antworten (1)
harshi yaduvanshi
am 6 Apr. 2018
i have this question i want to convert this python code to matlab.
import random;
import pandas as pd
import numpy as np
def sqrt_sum(a,b): return round(np.sqrt(np.sum((np.array(a)-np.array(b))**2)),5)
def weighted(W,d): return (np.multiply(W,d))
def partition(X,N,L,R,W):
#compute distances
p=[[] for i in range(N)]
w_dist=[]
for i in range(N):
for j in range(L):
dj=sqrt_sum(X.ix[i].tolist(),R[j])
p[i].append(dj)
wj=sum(weighted(W,p[i]))
w_dist.append(wj)
max_d=max(w_dist)
min_d=min(w_dist)
interval_length=(max_d - min_d)/L
#find ranges ranges=[] ranges.append(min_d) #find all ranges for j in range(L): rangej=min_d + interval_length min_d=rangej ranges.append(rangej)
X=X.values.tolist()
#now put the elements into range intancess
#############################################
pj=[[] for i in range(L)]
for i in range(N):
for j in range(len(ranges)-1):
if w_dist[i]>=ranges[j] and w_dist[i]<=ranges[j+1]:
pj[j].append(X[i])
return ranges,pj
def Search_phase(X,N,L,R,W,K,Q,ranges,pj): dq=0 knn=[] for j in range(L): d=sqrt_sum(Q,R[j]) dq=dq+weighted(W[j],d) for i in range(len(ranges)-1): if dq>=ranges[i] and dq<=ranges[i+1]: distance=[] for j in range(len(pj[i])): distance.append(float(sqrt_sum(Q,pj[i][j]))) distance=np.asarray(distance) lists=distance.argsort()[:5] for x in lists: knn.append(pj[i][x])
return knn
def fetching_data(): X=pd.read_csv("IRIS(2).csv",header=None) N=len(X) L=4 R = X.sample(L)
R=R.values.tolist()
W=[0.1,0.3,0.8,0.2]
K=5
Q=[0.196667,0.166667,0.389831,0.375000]
return X,N,L,R,W,K,Q
X,N,L,R,W,K,Q=fetching_data() ranges,pj=partition(X,N,L,R,W) KNN=Search_phase(X,N,L,R,W,K,Q,ranges,pj) print("top k-nn are",KNN)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Call Python from MATLAB finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!