How can I solve the equation of curvature on PDE Toolbox?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)
0 Kommentare
Antworten (1)
Precise Simulation
am 26 Okt. 2017
Bearbeitet: Precise Simulation
am 29 Okt. 2017
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
2 Kommentare
Precise Simulation
am 31 Okt. 2017
Yes, if your function 'f' is labelled 'u' in the pde implementation.
Siehe auch
Kategorien
Mehr zu Geometry and Mesh finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!