Solving Coupled Differential Equation

19 Ansichten (letzte 30 Tage)
Harshit Agarwal
Harshit Agarwal am 23 Okt. 2017
Kommentiert: David Goodmanson am 24 Okt. 2017
Hello,
I want to solve following differential equation:
(x^2+x+1) / (x^2+x) dx/dt + dy/dt = 1 with constraint x+x^2 = y+y^2
It involves derivatives of both x and y. How can I solve this in Matlab.
Thanks guys in advance!! Cheers

Akzeptierte Antwort

Birdman
Birdman am 23 Okt. 2017
syms y(t) x(t)
a=(x^2+x+1)/(x^2+x);
%%because of the constraint, x+x^2=y+y^2 ----> x+y=-1. Take the derivative wrt t and you will
%%find x_dot=-y_dot;
eqns=a*diff(x,t)-diff(x,t)==1;
X=dsolve(eqns,t)
Try this.
  6 Kommentare
Torsten
Torsten am 24 Okt. 2017
Bearbeitet: Torsten am 24 Okt. 2017
Differentiate the algebraic equation with respect to t.
The differential equation and the differentiated algebraic equation then give you a linear system of equations in the unknowns dx/dt and dy/dt. Solve it explicitly for dx/dt and dy/dt and then use one of the standard ODE integrators.
Or write your system as
M*[dx/dt ; dy/dt] = f(t,x,y)
with
M = [(x^2+x+1)/(x^2+x) 1 ; 0 0]
f = [1 ; x^2+y^2+x*y-10]
and use ODE15S with the state-dependent mass matrix option.
Best wishes
Torsten.
David Goodmanson
David Goodmanson am 24 Okt. 2017
Why should x+x^2 = y+y^2 imply x+y = -1 only? x = y also works, in which case
eqns=a*diff(x,t)-diff(x,t)==1;
becomes
eqns=a*diff(x,t)+diff(x,t)==1;
in which case
Warning: Unable to find explicit solution. Returning implicit solution instead.
X = solve(2*x - 2*atanh(2*x + 1) == C2 + t, x)
Not as convenient as the first solution since t is given as a function of x rather than vice versa, but still a solution.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by